fermer
retour en haut de la page

Évaluer l’état de santé des milieux aquatiques en Outre-mer : des outils basés sur la biodiversité

Une biodiversité exceptionnelle peuple les cours d’eau et les eaux marines des outre-mer français. Près de 500 espèces de poissons évoluent dans les fleuves et criques de la forêt amazonienne de Guyane ; plus de 150 variétés de coraux composent les récifs de Mayotte et de La Réunion ; un millier de taxons de diatomées, algues microscopiques unicellulaires, habite le fond des cours d’eau des Antilles, de Mayotte et de La Réunion. Cette nature exubérante subit pourtant les pressions des activités humaines et peut en être fortement impactée. Les rivières des territoires insulaires de la Guadeloupe, de la Martinique, de Mayotte et de La Réunion pâtissent notamment d’importants prélèvements d’eau qui réduisent drastiquement sa disponibilité pour la vie et la migration des espèces. Les activités d’orpaillage en Guyane induisent destruction du milieu naturel, asphyxient des rivières par les boues et pollution au mercure. À Mayotte, les détergents et lessives utilisées par les lavandières génèrent une pression chimique importante sur les invertébrés benthiques, organismes qui peuplent le fond des cours d’eau.

 

Pour rendre compte des altérations subies par les écosystèmes aquatiques et les communautés animales et végétales qui les composent, et ainsi pouvoir alerter et agir pour leur protection, la Directive cadre sur l’eau (DCE) a amené à développer des outils pour la surveillance des milieux aquatiques. Cette directive européenne, adoptée en 2000, vise à maintenir ou restaurer leur bon état écologique. En faisant des communautés biologiques les sentinelles de la qualité des eaux, elle a érigé la biodiversité en « juge de paix » de la surveillance et de la reconquête de l’état des rivières, des lacs et des eaux littorales.

[Synthèse] Schémas spatiaux et temporels de blanchissement de masse des coraux pendant l’Anthropocène

Un des résultats majeurs de l’étude « Schémas spatiaux et temporels de blanchissement de masse des coraux pendant l’Anthropocène », publiée dans Science, est la mise en évidence de l’augmentation spectaculaire de la fréquence et de l’intensité des phénomènes de blanchissement corallien qui atteignent des niveaux très élevés et quasiment irréversibles.

 

« L’état futur des récifs et des services écosystémiques qu’ils fournissent aux populations dépendra de manière directe de l’évolution de nos émissions de gaz à effet de serre et de notre capacité à renforcer la résilience des coraux au blanchissement par la gestion des facteurs de stress locaux ».

Schémas spatiaux et temporels de blanchissement de masse des coraux pendant l’Anthropocène

L’une des conséquences liées à l’augmentation des températures est le blanchissement corallien.

Le blanchissement se produit lorsque la densité des symbiotes algales, les zooxanthelles (Symbiodinium spp.), dans les tissus d’un hôte corallien diminue drastiquement à la suite d’un stress environnemental, révélant le squelette blanc du corail sous-jacent. La survie des coraux blanchis est alors compromise physiologiquement et nutritionnellement. Un blanchissement prolongé sur plusieurs mois conduit à des niveaux élevés de mortalité corallienne. La modélisation du climat mondial et les observations satellitaires indiquent également que les conditions thermiques requises pour le blanchissement des coraux prévalent de plus en plus, laissant présager que les zones de refuge, indemnes de blanchissement, pourraient disparaître au milieu du siècle.

 

Ces épisodes de blanchissement corallien, de plus en plus récurrents, et la mortalité des coraux qui en découle sont des phénomènes récents causés par l’impact anthropique. Ce qui, jusque dans les années 1980, n’était qu’un phénomène observable à l’échelle locale (quelques dizaines de kilomètres), causé par des facteurs de stress locaux (inondations d’eau douce, sédimentation ou encore temps inhabituellement froid ou chaud) est devenu un phénomène observable à l’échelle régionale (> 1000 km) et globale lié aux pressions anthropiques. C’est ce que révèle les bandes de croissance des coraux âgés des Caraïbes : les distorsions synchrones des dépôts squelettiques (bandes de stress) le long d’un tronçon de 400 km du récif mésoaméricain n’ont été trouvées que dernièrement suite aux conditions extrêmement chaudes.

 

Un des résultats majeurs de l’étude « Schémas spatiaux et temporels de blanchissement de masse des coraux pendant l’Anthropocène », publiée dans Science, est la mise en évidence de l’augmentation spectaculaire de la fréquence et de l’intensité des phénomènes de blanchissement corallien qui atteignent des niveaux très élevés et quasiment irréversibles.

 

Acidification des océans : conséquences sur les écosystèmes et les activités humaines

Telles sont les questions qui seront abordées lors des tables rondes et qui rassembleront scientifiques, acteurs professionnels et associations.

Ce colloque s’appuiera sur les expériences de terrain et sur les résultats des projets scientifiques financés par le ministère chargé de l’environnement dans le cadre du programme « Acidification des océans ».

[Vidéos] DCSMM – Bilan de santé des eaux marines métropolitaines – Ouverture de la consultation publique

Les documents stratégiques de façade font l’objet d’une consultation du public, qui s’ouvre aujourd’hui et jusqu’au 4 juin prochain sur : https://www.merlittoral2030.gouv.fr/

Cette consultation donne l’opportunité à toutes les parties prenantes de s’exprimer sur le contenu de ces documents, leur niveau d’ambition. Le niveau de participation est également révélateur de l’intérêt que la société porte aux enjeux marins. Les documents stratégiques de façade devraient ensuite être adoptés en septembre 2019.

Les poissons d’eaux profondes : à pêcher avec grande modération

L’exploitation non-durable des espèces est la deuxième cause du déclin global de la biodiversité, après le changement d’utilisation des terres. Elle est aussi probablement une des plus évidentes à résoudre, via des règlementations pertinentes. En se fondant sur les connaissances scientifiques, elles permettent de mieux gérer le prélèvement des espèces et d’ainsi assurer le renouvellement naturel des ressources. Le secteur des pêches notamment dispose de nombreux outils. Mais comme le révèle le cas des poissons d’eaux profondes, des mesures tardent parfois à être prises, mettant en danger les équilibres des écosystèmes et compromettant donc également la durabilité des activités.

 

Ses poissons vivant à plusieurs centaines de mètres de profondeur se sont retrouvés sur nos étals à la fin des années 1980. Les populations de morues, de lieus noirs et de merlus en mer du Nord et à l’ouest de l’Écosse connaissent un déclin de leur biomasse en raison de leur surexploitation, ce qui provoque une baisse de rentabilité des pêcheries françaises de haute-mer. Les chalutiers se tournent alors vers les espèces vivant plus en profondeur, entre 800 et 1 500 mètres, telles que le grenadier de roche (Coryphaenoides rupestris), le sabre noir (Aphanopus carbo) et l’hoplostèthe orange, ou empereur (Hoplostethus atlanticus) (Charuau et al., 1996). À la même époque, la consommation de poisson évolue vers une demande plus importante de filets de poissons au détriment de l’achat de poissons entiers. Cette évolution des modes de consommation permet la mise sur les marchés de filets de ces poissons d’eaux profondes, alors que présentés entiers, leur aspect aurait probablement été peu engageant pour les consommateurs. Plusieurs espèces de requins profonds sont quant à elles présentées sous forme de saumonette (requins étêtés, vidés et pelés).

 

Dès la fin des années 1990, certaines populations de poissons profonds montrent à leur tour des signes de déclin. Dans certaines zones, les captures d’hoplostèthes oranges, d’abord abondantes, se sont effondrées au bout de 12 à 18 mois d’exploitation seulement, révélant que pour cette espèce la pêche peut extraire une forte proportion de la biomasse1 en seulement quelques mois.

Dans des océans en mutation, la pêche doit devenir durable

À mesure que le climat se réchauffe, les températures des mers augmentent également. Du plancton aux oiseaux, en passant par les poissons, ce phénomène modifie significativement toutes les composantes des écosystèmes marins. Un des effets les plus documentés de ce réchauffement est la migration des espèces vers les pôles, qui se traduit par une diminution de la biodiversité marine dans la zone intertropicale. Mais de nombreux autres facteurs influent sur les communautés d’espèces, notamment leur exploitation non-durable par la pêche. Cette dernière est alors responsable d’impacts très négatifs sur les populations de poissons, dont la diminution a aussi une incidence négative sur les oiseaux marins (Cury et al., 2011 ; Grémillet et al., 2018). Une proportion croissante de ces populations – un tiers des espèces pêchées en 2015 – est surexploitée, tandis que 60 % sont exploitées à leur maximum, et seules 7 % des populations sont sous-exploitées (FAO 2018). Or, l’océan reste une source essentielle d’approvisionnement en protéines pour des millions de personnes dans le monde, notamment dans les pays en développement.

 

Il est donc urgent de mettre en place une gestion soutenable des pêches, au moment même où les impacts négatifs du changement climatique rendent la tâche encore plus complexe : certains modèles prévoient une diminution de la biomasse des poissons allant jusqu’à 25 % d’ici la fin du siècle, si les émissions de gaz à effet de serre devaient s’intensifier (Lotze et al., 2018). Pour estimer les impacts des changements climatiques combinés à ceux des pratiques de pêche, une équipe de scientifiques menée par Caihong Fu (DFO, Canada) et Yunne-Jai Shin (IRD, France) a étudié neuf écosystèmes marins dans le monde entier. L’équipe s’est appuyée sur des modèles mathématiques développés pour chaque écosystème, et les a utilisés comme des laboratoires virtuels. En manipulant ces outils, les chercheurs ont pu explorer la manière dont le système évolue lorsque le changement climatique et la pêche entrent en interaction. L’objectif du projet est d’apporter un éclairage scientifique à la prise de décisions afin d’adapter les politiques de gestion des pêches au changement climatique.

La compétition mondiale entre les pêcheries et les oiseaux marins persiste malgré leur déclin généralisé

En 2011, l’article de Cury et al. Global Seabird Response to Forage Fish Depletion — One-Third for the Birds soulignait combien les oiseaux marins étaient dépendants des ressources marines dans certaines régions du monde. Grémillet et ses collègues démontrent aujourd’hui que la compétition entre les oiseaux marins et les pêcheries est un facteur de stress significatif à l’échelle globale sur la période 1970-2010, pour une communauté mondiale d’oiseaux marins qui a décliné de 70 % depuis 1950 (Paleczny et al., 2015).

Bilan de santé des eaux marines (DCSMM)

Le ministère de la transition écologique et solidaire a mobilisé une large communauté scientifique pour évaluer l’état écologique des eaux marines métropolitaines.

 

Le 9 novembre 2018, le colloque « bilan de santé des eaux marines » à donné la parole aux chercheurs mobilisés pour communiquer leurs principaux résultats. S’en est suivi une table ronde pour mettre en perspective les implications opérationnelles de ce bilan pour la gestion des écosystèmes littoraux et marins.

 

Le colloque a été suivi de la projection d’un film documentaire puis d’un temps d’échange entre le public et les experts présents.

 

Action n°9 : Je préfère le poisson durable

Les Français consomment en moyenne plus de 30 kg par an de « poisson » (au sens commercial ou alimentaire, c’est-à-dire englobant poissons, mollusques et crustacés aquatiques). Dans l’Union Européenne, les ¾ de la consommation sont pêchés tandis qu’¼ est élevé, et à l’échelle mondiale, l’aquaculture assure un peu plus de la moitié de l’approvisionnement, le reste provenant de la pêche en eaux marines et continentales. L’Organisation des Nations Unies pour l’Alimentation (FAO)1 estime qu’1/3 des stocks2 halieutiques sont surexploités, c’est-à-dire soumis à une intensité de capture qui excède leur capacité à se renouveler. Si certaines espèces – telles que le thon rouge – se portent mieux grâce à des mesures de régulation de la pêche, d’autres sont au bord de l’effondrement et se retrouvent pourtant dans nos assiettes. Les travaux de recherche et rapports d’expertise scientifique peuvent cependant guider nos choix.

 

« Selon l’Organisation des Nations Unies pour l’Alimentation, 1/3 des stocks halieutiques sont surexploités. »

 

Préférer les poissons d’élevage à leurs équivalents sauvages n’est pas toujours une solution, car les seconds sont nécessaires pour nourrir les premiers. Plus précisément, plusieurs espèces de « petits pélagiques » sauvages (anchois, harengs, sardines, etc., aussi appelés « poissons fourrage ») entrent dans la composition de l’aliment des espèces carnassières d’élevage comme le saumon, ou encore les crevettes tropicales. Il faut un à plusieurs kg de poissons fourrage pour produire un kg d’une espèce d’élevage (dans le cas du saumon norvégien, environ 1 kg pour 1 kg). Les petits pélagiques « pèsent » près de 40 % des captures marines mondiales. Outre leur utilisation partagée, voire concurrente, entre fabrication d’aliments pour animaux d’élevage et consommation humaine (Majluf et al. 2017), ils sont aussi des proies indispensables aux prédateurs dans les écosystèmes marins.

 

Ainsi, la surpêche des petits pélagiques peut entraîner des conséquences dramatiques pour de nombreuses espèces de poissons, de mammifères et d’oiseaux marins comme le thon rouge de l’Atlantique, le manchot de Humboldt, le pétrel géant et la baleine à bosse (Pikitch et al. 2012, 2014). Or, les poissons fourrage, dont la vulnérabilité a été confirmée par des travaux scientifiques dans le cadre du projet Emibios, sont particulièrement affectés par les impacts combinés de la pêche et des changements climatiques (Travers-Trolet et al. 2014, Fu et al. 2018). Il ne faut cependant pas oublier que 30 % de la production aquacole mondiale de poissons d’élevage ne nécessite aucun apport d’aliment incluant du poisson fourrage : il s’agit en majorité de la carpe argentée et de la carpe à grosse tête. Il en est de même pour la culture des mollusques bivalves, principalement les moules, huîtres et palourdes.

 

Le maquereau et le hareng, ayant autrefois connu la surexploitation, auraient à présent des stocks suffisamment reconstitués pour que l’on puisse en recommander l’achat, d’autant plus que les qualités nutritionnelles des petits pélagiques sont avérées. Chez le poissonnier, plutôt que la dorade rose, classée comme quasi-menacée par l’Union internationale pour la conservation de la nature, il semblerait préférable de choisir la dorade grise ou la dorade royale3. Et plutôt que pour le thon rouge, dont l’état s’est certes amélioré mais reste fragile, mieux vaudrait opter pour la bonite à ventre rayé, également appelée « thon listao ». Les situations de ces espèces peuvent néanmoins basculer si les consommateurs ou les industriels se tournent trop massivement vers elles ! Pour acheter durable, le site www.ethic-ocean.org propose des guides pratiques et documentés, des fiches et une application mobile.

 

« Le label MSC est décerné aux pêcheries qui s’engagent à assurer une gestion durable des stocks afin d’éviter la surpêche. »

 

L’aquaculture étant assimilée à une activité agricole — ce qui n’est pas le cas de la pêche, les produits qui en sont issus peuvent être certifiés « Agriculture biologique », ce label ne tenant toutefois pas pleinement compte de leur incidence sur les écosystèmes marins. Concernant les poissons, mollusques et crustacés sauvages, le label MSC4 est décerné aux pêcheries qui s’engagent à assurer une gestion durable des stocks afin d’éviter la surpêche, et à ne pas détériorer les milieux aquatiques, par ailleurs très variés.

 

Car l’impact sur la ressource en elle-même n’est pas le seul qu’il faut considérer. Les fonds marins abritent les poissons dits « benthiques », à l’image des diverses espèces de raies, de soles et de plies (ou carrelets), ou encore de la baudroie commune, dont la queue est appelée « lotte ». D’autres poissons, dits « démersaux », vivent à proximité du fond, à l’instar du merlu commun5 et des différentes espèces de « gadidés », une famille de poissons dont le plus connu est la morue, ou cabillaud, et qui comprend également le merlan, le haddock et le colin d’Alaska (ce dernier atteignant le plus gros volume de capture parmi les poissons destinés à la consommation humaine).

 

La capture des poissons et de coquillages benthiques et démersaux nécessite des techniques qui raclent les sédiments marins (dragues et chaluts). La faune, constituée de coraux, d’éponges, de vers et de crustacés, est d’autant plus affectée que les engins pénètrent profondément dans le fond marin (Hiddink et al. 2017). Le temps mis par les écosystèmes pour se remettre des effets du chalutage varie entre près de deux ans et plus de six ans (Hiddink et al. 2017).

 

« La biodiversité de la petite faune est réduite de moitié dans les sédiments chalutés des grands fonds méditerranéens. »

 

Dans les sédiments régulièrement chalutés des grands fonds (-200 m et au-delà) du nord-ouest de la mer Méditerranée, la petite faune voit son abondance réduite de 80 % et sa biodiversité réduite de moitié (Pusceddu et al. 2014). Le renouvellement de la matière organique, processus crucial dans les écosystèmes benthiques, y est de 37 % plus lent. Or, le chalutage concerne des habitats toujours plus profonds, où l’impact est encore plus sévère et persistant (Clark et al. 2016). En Manche et au sud de la Mer du Nord, cette pratique affecte en particulier les espèces à durée de vie longue, du fait de leur croissance plus lente et de leur maturité plus tardive (Rijnsdorp et al. 2018). Cependant, pour certains poissons, plusieurs modes de pêche sont possibles. Mieux vaut alors choisir, par exemple, un bar de ligne plutôt qu’un bar de chalut.

 

Parmi les poissons dont les stocks sont largement surexploités figurent les espèces d’esturgeons (et leurs œufs, le caviar), l’espadon reconnaissable à son long rostre en forme d’épée, et surtout de nombreuses espèces de requins. D’après l’Union internationale pour la conservation de la nature (UICN), un quart des raies et des requins sont fortement menacés d’extinction (Davidson et al. 2016, Dulvy et al. 2017). Il semble alors paradoxal que, selon la FAO, les débarquements (quantités rapportées au port) de requins et de raies aient décliné de près de 20 % en une décennie, après un pic en 20036.

 

« D’après l’UICN, un quart des raies et des requins sont fortement menacés d’extinction. »

 

En fait, si les pêcheurs capturent moins de requins et de raies, c’est bien parce que ces animaux se font plus rares dans les océans, et non parce que des mesures de régulation les y incitent ou obligent. En étudiant la situation dans 126 pays, des chercheurs ont en effet conclu que les débarquements de raies et de requins étaient étroitement liés à la demande des consommateurs, entraînant la pression de pêche sur les ressources, plutôt qu’à une meilleure gestion de leurs stocks. Ainsi, les pays présentant les plus forts déclins, Pakistan, Sri Lanka et Thaïlande, ont des côtes densément peuplées et exportent davantage de viande de raie et de requin (Davidson et al. 2016).

 

À l’heure où le commerce des produits issus de la mer est mondialisé et où 68 % des denrées alimentaires animales d’origine aquatique de l’Union Européenne sont importées (EUMOFA 2017), favoriser les produits locaux permet de diminuer le coût écologique du transport de l’océan à l’assiette. Et, à l’image des fruits et légumes, ils se consomment aussi de saison, selon leur période de reproduction (au cours de laquelle il faut éviter de les pêcher).

 

_______

1 Voir la récente édition du rapport biennal de la FAO (SOFIA 2018 : « La situation mondiale des pêches et de l’aquaculture), publié dans les 6 langues de l’ONU et téléchargeable à l’adresse :
http://www.fao.org/documents/card/en/c/I9540FR.

2 Le stock correspond à l’ensemble des individus d’une espèce susceptibles d’être pêchés, dans une zone géographique donnée.

3 Espèce carnivore sauvage, la daurade royale est aussi, avec le loup (ou bar), un produit « phare » de l’aquaculture en Méditerranée.

4 Le Marine stewardship council (https://www.msc.org/fr) est une ONG fondée par une entreprise, Unilever, et par le Fonds mondial pour la nature (WWF), mais indépendante de ces derniers depuis 1999. Aujourd’hui, 315 pêcheries sont certifiées MSC dans le monde, dont une dizaine en France.

5 Les merlus sont aussi appelés « colins », même s’ils sont assez différents du « colin d’Alaska » (gadidé).

6 Les captures de requins et de raies sont souvent déclarées par groupes d’espèces et non par espèce. On connaît des exemples où l’effondrement de l’une ou de plusieurs d’entre elles a été masqué par un report d’effort sur d’autres (Iglésias et al. 2010)

Récifs coralliens : des solutions pour aujourd’hui et demain

À eux seuls, ils abritent un tiers de la biodiversité marine connue. Ces zones sont de véritables nurseries pour les poissons récifaux et autres organismes marins. Plus de 500 millions de personnes dépendent de ces écosystèmes à travers la pêche, le tourisme, ou encore leur protection contre la houle. Tous ces services rendus ont un coût global estimé à 30 milliards de dollars par an.

La FRB, l’Institut océanographique de Monaco, le Centre de recherches insulaires et observatoire de l’environnement (CRIOBE-CNRS-EPHE), la Plateforme Océan & Climat et l’Ifrecor ont organisé un colloque restituant les dernières connaissances scientifiques et les solutions de préservation.

 

Action n°4 : Je refuse les plastiques, car le recyclage ne suffit pas

Souvent trop fins ou usés, 70 % des détritus plastiques ne sont pas recyclés (Commission européenne 2017). Une grande part finit alors dans les milieux aquatiques. Empruntant les cours d’eau, ou disséminés à partir de décharges littorales, ils rejoignent les océans et les déchets qui s’y trouvent déjà, tels que les filets de pêche. Des chercheurs ont simulé ce processus pour déterminer l’ampleur de cette contribution (Lebreton et al. 2017). Ainsi, ils estiment que les rivières drainent chaque année dans les océans entre 1,15 et 2,41 millions de tonnes de plastique. Les 20 rivières les plus polluantes constituent deux tiers de cette masse, la plupart d’entre elles se trouvant en Asie (Lebreton et al. 2017).

 

Dans le monde, la production globale de résines et de fibres plastiques est passée de 2 millions de tonnes en 1950 à 380 millions de tonnes en 2015. Sur cette période, 8,3 milliards de tonnes ont été produites au total, dont les trois quarts sont devenus des déchets (Geyer et al. 2017). Parmi les plastiques les plus couramment utilisés, aucun n’est biodégradable (Geyer et al. 2017). Les emballages en constituent une grande part, et leur recyclage reste à améliorer. Ainsi, on trouve des débris plastiques dans la totalité des principaux bassins océaniques.

 

« Dans les récifs envahis par les déchets plastiques, le risque de maladie des coraux est multiplié par 20. »

 

Certaines espèces, telles que les tortues marines, confondent ces déchets avec leurs proies. D’autres ingèrent des organismes eux-mêmes contaminés. Les récifs coralliens sont aussi particulièrement touchés par cette pollution plastique. D’après une équipe internationale dont les résultats sont parus cette année, le plastique favorise la colonisation des récifs par des microbes pathogènes (Lamb et al. 2018). L’étude, qui porte sur 159 récifs d’Asie et du Pacifique, montre que dans les récifs envahis par les déchets plastiques, le risque de maladie des coraux est multiplié par 20, accentuant ainsi la dégradation de cet habitat complexe qui héberge de nombreuses espèces de poissons (Lamb et al. 2018).

 

Rejetés à la mer, les grands débris de plastique sont soumis aux rayons UV, aux contraintes mécaniques des vagues et aux agressions biologiques qui progressivement les fragmentent en pièces de plus en plus petites (Cózar et al. 2014) : les « microplastiques » (moins de cinq millimètres), puis les « nanoplastiques » de moins d’un micron (millième de millimètre). Ces minuscules débris, formés d’une variété de composés1 et additifs2, agrègent des microorganismes et diverses molécules dont les polluants organiques persistants comme les PCB et certains pesticides. Ils sont facilement ingérés par les animaux marins, affaiblissant leur croissance et leur reproduction (Galloway et al. 2017). Des résultats expérimentaux récemment obtenus par des chercheurs américains (Allen et al. 2017) suggèrent qu’une espèce de corail filtre préférentiellement les particules de plastique non recouvertes d’un film microbien, les auteurs invoquant un effet « phagostimulant » (qui stimule l’alimentation).

 

« Les microplastiques sont facilement ingérés par les animaux marins, affaiblissant leur croissance et leur reproduction »

 

Les formes de vie microscopiques des océans réagissent également à la présence de ces déchets. L’expédition Tara Méditerranée, coordonnée par l’Observatoire océanologique de Villefranche-sur-mer (UPMC-CNRS), a recueilli un grand nombre d’échantillons marins. Dans une étude qui vient de paraître, des chercheurs de l’Observatoire océanologique de Banyuls (UPMC-CNRS) et leurs collègues ont montré, à partir de ces échantillons, que les débris plastiques en mer Méditerranée abritaient des communautés de bactéries différentes de celles qui vivent librement dans l’eau ou accrochées à des particules organiques (Dussud et al. 2018). Ces communautés forment un ensemble appelé « plastisphère ». Certaines bactéries ne peuvent vivre que sur des déchets plastiques et exploitent spécifiquement ce nouvel habitat (Dussud et al. 2018). De tels travaux sont essentiels pour mieux comprendre la façon dont les communautés microbiennes réagissent au plastique en milieu marin.

 

Les microplastiques

© Alexandra TER HALLE / IMRCP / CNRS Photothèque

“Microplastique, colonisé par une communauté bactérienne appelée biofilm, observé en microscopie électronique à balayage. L’image est colorisée. Le biofilm qui se développe sur le plastique est visible en couleurs. Les plus gros objets sont des diatomées. Ce débris de plastique a été collecté dans le gyre océanique de l’Atlantique nord, zone où s’accumulent les déchets plastiques flottants, en mai 2014 lors des expéditions 7e Continent. Le biofilm est une communauté bactérienne qui se développe sur les microplastiques flottant en mer, il a été baptisé « plastisphère ».”

 

_______

1 polyéthylènes (PE), polypropylènes (PP), chlorures de polyvinyle (PVC), polystyrènes (PS, dont expansé, EPS), polyuréthanes (PUR) et polytéréphtalates d’éthylène (PET). Au-delà de leur « durée d’utilité » variable selon l’usage – de relativement brève pour le packaging (PE, PP) à longue pour le bâtiment (PVC) –, ces matériaux deviennent des déchets à « longue durée de vie » omniprésents dans l’environnement en l’absence de recyclage.

2 tels que le bisphénol A, le nonylphénol et les phtalates.

Action n°2 : J’évite les crèmes solaires néfastes pour la vie marine

Depuis près d’une quinzaine d’années, l’impact des crèmes solaires sur les coraux est dans le viseur des chercheurs. La première étude d’envergure remonte à 2008 (Danovaro et al. 2008). Les scientifiques se sont notamment penchés sur les zooxanthelles, qui vivent en symbiose avec les coraux. Ces petites algues ont pour particularité de tirer leur énergie des rayons du soleil par photosynthèse, et d’apporter aux coraux des nutriments essentiels. Si les algues meurent ou quittent la colonie de corail, cette dernière blanchit et succombe. L’étude, réalisée en laboratoire et in-situ dans différentes mers du monde, conclut que quels que soient le lieu et la concentration testée de crème solaire, cette dernière a systématiquement abouti à un rejet par les coraux de mucus contenant des zooxanthelles, rejet suivi d’un blanchissement complet dans les 96 heures (Danovaro et al. 2008). Un phénomène d’autant plus rapide que la température du milieu était élevée.

 

« Les larves de coraux exposées à l’oxybenzone s’ossifient de façon anormale et s’enferment dans leur propre squelette. »

 

En testant séparément différents composants présents dans les crèmes solaires, les auteurs ont montré que certains d’entre eux, des filtres organiques à UV comme le butylparaben et l’oxybenzone, se révélaient particulièrement néfastes, sans toutefois en expliquer le mécanisme précis. Or, selon une étude de Downs et al. (2016), à la lumière, l’oxybenzone détruit directement les zooxanthelles tandis qu’à l’obscurité, les coraux se mettent à les digérer. En outre, lorsque les larves de coraux sont exposées à cette substance, elles s’ossifient de façon anormale et s’enferment alors dans leur propre squelette. De plus, l’oxybenzone induit des lésions dans leur ADN. Les filtres minéraux (oxydes de zinc ou de titane) sous forme de nanoparticules seraient eux aussi toxiques pour la vie aquatique, car ils produisent des molécules appelées ROS (reactive oxygen species) qui détruisent les cellules (Lewicka et al. 2013 dans Wood 2018). Des études sont en cours pour évaluer leur effet sur les récifs coralliens (Tagliati et al. non publié, dans Wood 2018).

 

Il reste à savoir si les concentrations de crème solaire dans l’eau autour des récifs, probablement plus faibles que celles testées par les chercheurs en 2008, sont suffisantes pour entraîner de tels effets. Des études sont en cours. Cependant, certains blanchissements dans le monde semblent déjà ne pouvoir être expliqués que par la fréquentation des récifs par des touristes (Wood 2018). De prochaines études devraient aussi s’intéresser aux effets de ces produits à l’échelle de récifs coralliens entiers, voire d’écosystèmes, et non seulement aux effets distincts de chaque molécule, mais plutôt à leur « effet cocktail » lorsqu’elles agissent en mélange, comme c’est le cas en milieu naturel. Ces recherches seront cruciales : elles devront permettre de caractériser le risque de diminution de la résilience des coraux spécifiquement dû à ce stress écotoxicologique, sachant que les récifs sont déjà affaiblis par le réchauffement, l’acidification, ou encore par les ravages causés par l’étoile de mer Acanthaster, un redoutable « brouteur » de corail.

 

« Les récifs sont déjà affaiblis par le réchauffement, l’acidification, ou encore par les ravages causés par l’étoile de mer Acanthaster. »

 

Les filtres minéraux, lorsqu’ils ne sont pas formulés en nanoparticules, pourraient constituer une option plus favorable aux récifs – ce qui reste à confirmer par la science. Aujourd’hui, des crèmes solaires sont ainsi déclarées spécifiquement sans composants nuisibles aux coraux. Si aucun label n’existe encore pour certifier ces allégations, celles-ci marquent une volonté de certains industriels de prendre en compte l’impact de leurs produits sur la biodiversité. Cette démarche est à saluer.

 

© Lauric Thiault

Les récifs coralliens n’occupent que 0,1 % de la surface des océans, et représentent pourtant 30 % de la biodiversité marine mondiale. Les filtres contenus dans les crèmes solaires peuvent causer le blanchissement des coraux. Cependant, ce sont bien les changements globaux, avec la hausse des températures des océans, qui menacent le plus les récifs sur notre planète.

Mieux connaître la biodiversité européenne pour mieux la protéger : l’exemple des récifs coralligènes méditerranéens

À l’instar des récifs coralliens des pays tropicaux, les récifs coralligènes, dénommés ainsi pour le corail rouge qu’ils abritent, ont tout pour devenir un emblème pour les pays côtiers Méditerranéens. En effet, la riche et belle biodiversité qu’ils abritent présente un intérêt de conservation en soi, mais aussi des avantages pour la pêche et le tourisme. Les connaissances sur ces écosystèmes sont longtemps restées par­cellaires, mais se développent aujourd’hui, soulignant la beauté et la vulnérabilité de ces habitats.

 

L’article est consultable dans les ressources ci-dessous. 

La régulation de la pêche européenne a-t-elle sauvé le thon rouge ?

De nombreux stocks de poissons des mers et océans du globe ont longtemps été – et sont encore – surexploités, notamment en Méditerranée. Cette surexploita­tion représente un gaspillage des ressources naturelles et aussi une menace pour la biodiversité. Cependant, des travaux de recherche montrent qu’une partie des espèces pêchées vont mieux, grâce aux mesures de régulation de la pêche. C’est le cas pour les thons rouges de Méditerranée et de l’Atlantique Est. Ces bons ré­sultats ont d’ailleurs incité la Commission internationale pour la conservation des thonidés de l’Atlantique (CICTA) a autoriser l’augmentation des quotas de pêche pour cette espèce . La question posée est alors : « le thon rouge peut-il supporter cette augmentation des quotas » ?

 

L’article est consultable dans les ressources ci-dessous. 

L’exploitation des ressources halieutiques : pressions sur les écosystèmes marins, état des pêcheries, impacts sur la biodiversité et aménagement de ses usages

En 2015, l’offre de poissons, mollusques et crustacés (collectivement appelés « poisson ») a atteint le chiffre record de 20,3 kg par personne en moyenne. Le poisson demeure l’un des produits alimentaires de base les plus échangés au monde avec comme premier importateur l’Union européenne, devant les Etats-Unis, la Chine et le Japon.

 

L’article est consultable dans les ressources ci-dessous. 

Des aires marines protégées en haute mer : l’Europe pionnière

La mise en place d’aires marines protégées est l’une des mesures phares de conservation de la biodiversité marine. Il s’agit principalement de définir un espace au sein duquel les activités humaines pourront être restreintes et la lutte contre la pollution renforcée, dans l’objectif de protéger un écosystème particulièrement remarquable ou sensible.

 

L’article est consultable dans les ressources ci-dessous. 

Comment accroître durablement les ressources alimentaires marines ?

La Commission européenne, agissant dans le cadre du processus d’avis scientifique (Commission’s Scientific Advice Mechanism, SAM), a saisi son groupe de conseillers scientifiques de haut niveau sur la question « comment accroître l’extraction de nourriture et de biomasse d’origine marine sans compromettre les bénéfices des générations futures ? ».

 

Le groupe a entrepris ses travaux au début de l’année 2017 ; son rapport a été publié le 30 novembre 2017.

 

La note consultable ci-dessous comprend deux parties :

  • la première fournit des informations sur l’état et les tendances de la production d’aliments animaux d’origine aquatique, et rappelle quels sont les principaux impacts de la pêche et de l’aquaculture sur la biodiversité marine ;
  • la seconde commente les recommandations du groupe d’experts, spécialement au plan des incidences potentielles sur la biodiversité.

Nécessité d’un accord international sur la pollution de l‘océan par les plastiques

Accédez à la traduction de l’article scientifique :
Pourquoi un accord international sur la pollution de l‘océan par les plastiques est indispensable

 

Les plastiques s’accumulent partout dans le monde à un rythme croissant. D’après Geyer R. et al., si la tendance actuelle continue, 12 000 millions de tonnes de déchets plastiques seront mis en décharge ou dans l’environnement d’ici 2050.

 

Comme les gaz effet de serre ou les substances détruisant la couche d’ozone, les plastiques ne s’arrêtent pas aux frontières nationales. Entraînés par le vent ou l’eau, ils finissent majoritairement leur course dans les océans affectant les organismes à tous les niveaux d’organisation biologique.

 

Cette pollution impacte les animaux marins (capture, étranglement, étouffement, etc.), avec des conséquences souvent fatales. Son action chimique, sous forme microscopique, agit également sur les organismes au niveau génétique ou fonctionnel (baisse de fertilité), les populations (diminution de la taille des populations) ou les communautés (déstructuration des relations entre les organismes constituant ces communautés).

 

Ces impacts, combinés à l’accélération de la production de plastique, ont amené un collectif de chercheurs à interpeler la communauté internationale pour prendre des mesures avant que les écosystèmes ne soient altérés de façon irréversible.

 

Le collectif demande à ce qu’un accord international définisse des objectifs pertinents et mesurables pour réduire la pollution plastique dans tous les océans du monde, car si des solutions ont été mises en place au niveau local, elles n’ont pas une ampleur suffisante pour faire face au caractère global d’un problème qui s’accroit très rapidement.

 

Ils demandent aussi que cet accord soit accompagné d’un programme visant à étendre la responsabilité des producteurs et l’intégration des coûts environnementaux dans le prix des produits, pour créer un fonds mondial, sur le modèle du fonds Climat de l’UNCCC, afin d’aider les Etats participants à développer les filières appropriées de traitement des déchets plastiques.

Colloque Acidification des océans

Ce programme permet de mobiliser 720 000 euros à destination des chercheurs français. Lancé en septembre 2015, l’appel à propositions de recherche a reçu 18 propositions. Huit projets couvrant les défis de recherche allant de la compréhension des impacts de l’acidification à leur modélisation, en passant par l’observation et la cartographie du phénomène ont été sélectionnés par le conseil scientifique ad hoc présidé par Jean-Pierre Gattuso du Laboratoire d’océanographie de Villefranche-sur-Mer. Ces projets reçoivent chacun 90 000 euros et associent de nombreux laboratoires et instituts de recherche, en France métropolitaine, en Polynésie française et à Monaco.

 

Les 8 projets financés sont les suivants :

  • ACIDREEF : impact de l’acidification sur les récifs ; coordonné par le laboratoire CRIOBE (Polynésie Française), avec l’AIEA Monaco et le centre scientifique de Monaco
  • ECOSYSTEME : Évaluation des impacts sur deux écosystèmes de cyanobactéries (algues bleues) ; coordonné par le laboratoire CORAIL (Polynésie Française)
  • ICO-BIO : Impact du changement océanique sur la biologie de l’ormeau, une espèce d’intérêt économique ; coordonné par le laboratoire BOREA (station de biologie marine de Concarneau)
  • MERCY : Impact du mercure et du gaz carbonique sur la seiche ; coordonné par le laboratoire LIENS (université de La Rochelle)
  • COCCACE : Les coccolithophores (algues unicellulaires) et l’acidification océanique ; coordonné par le CEREGE (Aix-en-Provence)
  • ACIDOSCOPE : Acidification de l’océan : projections, régionalisation et cartographie ; coordonné par l’IPSL (Gif sur Yvette)
  • AiAiAi : Acidification, acclimatation et adaptation des huîtres, coordonné par IFREMER Polynésie
  • PACIO : Réponses physiologiques et adaptatives des poissons à l’acidification des océans ; coordonné par le laboratoire LEMAR (Brest).

 

Les conventions avec les porteurs des projets sont à présent presque toutes signées.

Le lancement du programme a lieu en parallèle du 4e atelier international sur l’impact économique de l’acidification des océans, consacré à l’écosystème corallien et organisé par le CSM et l’AIEA.

 

Découvrez, dans les ressources ci-dessous, les présentations des projets exposés ainsi que le compte-rendu du conseil scientifique qui s’est tenu ce même jour.

Les réserves marines peuvent atténuer les effets du changement climatique

Accédez à la transcription de l’article de C.M. Roberts et al. par Hélène Soubelet, docteur vétérinaire et directrice de la Fondation pour la recherche sur la biodiversité (FRB).

 

Les aires marines protégées ont un rôle majeur à jouer dans l’atténuation et l’adaptation aux changements globaux. En plus de préserver la biodiversité, une bonne gestion des réserves marines peut contribuer à l’adaptation des écosystèmes et des populations humaines aux cinq impacts majeurs du changement climatique sur les océans : l’acidification, la montée des eaux, l’intensification des tempêtes, les changements dans la distribution des espèces, la baisse de productivité et l’appauvrissement en oxygène. Les aires marines protégées peuvent même devenir des outils efficaces et peu coûteux pour réduire l’avancée du changement climatique. En effet, elles favorisent la séquestration et le stockage du carbone et constituent une « police d’assurance » pour les sociétés humaines en limitant les pressions directes sur l’environnement.

 

Parmi les effets positifs des aires marines protégées pour l’adaptation aux effets du changement climatique, on peut retenir que :

1/ la protection des zones littorales humides (mangroves, marais, herbiers) maintient une forte activité photosynthétique qui, en utilisant le CO2, réduit l’acidification des eaux. Ces zones constituent des refuges pour les organismes calcifiants.

2/ la création d’aires marines protégées en haute mer favorise la préservation d’une grande abondance des poissons téléostéens méso-pélagiques qui jouent un rôle majeur dans le cycle du carbone.

3/ les aires marines protégées régulent les menaces telles que la surexploitation des milieux, l’urbanisation côtière ou le dragage non durable et sanctuarisent des zones tampons (zones humides côtières, les vasières et les récifs) qui protègent les infrastructures et les zones anthropisées contre l’élévation du niveau de la mer.

 

Parmi les effets positifs des aires marines protégées pour l’atténuation du changement climatique, on peut retenir que :

1/ les océans constituent un puits de carbone majeur. Les animaux jouent des rôles cruciaux dans les processus biogéochimiques. Les aires marines protégées contribuent ainsi à la préservation du rôle des océans dans la régulation du climat.

2/ les aires marines empêchent le déstockage du carbone en limitant des méthodes de pêche hauturières intensives – comme le chalutage – qui participent à la remise en suspension du carbone sédimentaire.

3/ les écosystèmes complexes favorisent des processus comme la dispersion des pollutions, la protection côtière, ou encore la production alimentaire tout en évitant les changements de régime des écosystèmes aux conséquences graves et inattendues. 

 

C.M. Roberts et al., Marine reserves can mitigate and promote adaptation to climate change, PNA 114, 6167-6175, 2017

Les réserves marines peuvent atténuer les effets du changement climatique et favoriser l’adaptation des écosystèmes et des populations

Un article de synthèse signé par les plus grandes autorités mondiales en matière d’océanographie biologique – comme les scientifiques C.M. Roberts (Université d’York), J. Lubchenco, ancienne sous-secrétaire au commerce de l’administration Obama, D. Pauly (Université de la Colombie-Britannique) ou encore P. Cury (IRD et alors membre du conseil scientifique de la Fondation pour la recherche sur la biodiversité) – démontrent comment les aires marines protégées contribuent à la fois à la préservation des espèces, à l’atténuation du changement climatique et à son adaptation. Pour que ces zones soient un outil efficace pour préserver les espèces et faire face au changement climatique, les scientifiques estiment qu’il faudrait protéger 30 % du domaine marin, or seuls 3,5 % sont actuellement couverts.

 

Les aires marines protégées ont un rôle majeur à jouer dans l’atténuation et l’adaptation aux changements globaux. En plus de préserver la biodiversité, une bonne gestion des réserves marines peut contribuer à l’adaptation des écosystèmes et des populations humaines aux cinq impacts majeurs du changement climatique sur les océans : l’acidification, la montée des eaux, l’intensification des tempêtes, les changements dans la distribution des espèces, la baisse de productivité et l’appauvrissement en oxygène. Les aires marines protégées peuvent même devenir des outils efficaces et peu coûteux pour réduire l’avancée du changement climatique. En effet, elles favorisent la séquestration et le stockage du carbone et constituent une « police d’assurance » pour les sociétés humaines en limitant les pressions directes sur l’environnement.

 

Parmi les effets positifs des aires marines protégées pour l’adaptation aux effets du changement climatique, on peut retenir que :

  • la protection des zones littorales humides (mangroves, marais, herbiers) maintient une forte activité photosynthétique qui, en utilisant le CO2, réduit l’acidification des eaux. Ces zones constituent des refuges pour les organismes calcifiants ;
  • la création d’aires marines protégées en haute mer favorise la préservation d’une grande abondance des poissons téléostéens méso-pélagiques qui jouent un rôle majeur dans le cycle du carbone ;
  • les aires marines protégées régulent les menaces telles que la surexploitation des milieux, l’urbanisation côtière ou le dragage non durable et sanctuarisent des zones tampons (zones humides côtières, les vasières et les récifs) qui protègent les infrastructures et les zones anthropisées contre l’élévation du niveau de la mer

 

Parmi les effets positifs des aires marines protégées pour l’atténuation du changement climatique, on peut retenir que :

  • les océans constituent un puits de carbone majeur. Les animaux jouent des rôles cruciaux dans les processus biogéochimiques. Les aires marines protégées contribuent ainsi à la préservation du rôle crucial des océans dans la régulation du climat ;
  • les aires marines empêchent le déstockage du carbone en limitant des méthodes de pêche hauturières intensives – comme le chalutage- qui participent à la remise en suspension du carbone sédimentaire ;
  • les écosystèmes complexes favorisent des processus comme la dispersion des pollutions, la protection côtière, ou encore la production alimentaire tout en évitant les changements de régime des écosystèmes aux conséquences graves et inattendues

 

La synthèse complète est téléchargeable dans les ressources ci-dessous.