fermer
retour en haut de la page
Publications
Accueil > Publications > #ScienceDurable – Les écosystèmes côtiers, puits de carbone bleu
avril 2020  I  Article  I  Autres sources  I  Biodiversité et climat

#ScienceDurable – Les écosystèmes côtiers, puits de carbone bleu

Interview de Pierre Polsenaere, docteur en biogéochimie et écologie côtière (Ifremer)

Propos recueillis par Julie de Bouvilleexperte en communication

Les forêts ne sont pas les seuls écosystèmes à absorber le dioxyde de carbone. Les mangroves, herbiers marins ou les marais jouent un rôle majeur dans la séquestration du CO2 autrement appelé « Carbone bleu ». Préserver ces écosystèmes fragiles permet de lutter efficacement contre le changement climatique. Le chercheur Pierre Polsenaere de l’Ifremer revient sur l’importance de ces écosystèmes côtiers dans la séquestration du carbone.  

 

#ScienceDurable – Les écosystèmes côtiers, puits de carbone bleu Les mangroves, herbiers marins et marais jouent un rôle majeur dans la séquestration du CO2.

Qu’appelle-t-on le carbone bleu ? 

 

Le carbone bleu correspond au carbone séquestré par les écosystèmes côtiers végétalisés. Les marais salés, les mangroves, ou encore les herbiers, sont autant d’écosystèmes susceptibles de capter le carbone sur le court terme, environ une dizaine d’années, dans leur biomasse et sur des temps encore plus longs, des milliers d’années, dans leurs sédiments. Contrairement aux sols terrestres, ces sédiments côtiers ont tendance à s’étendre avec l’augmentation du niveau de la mer On constate donc que la séquestration de carbone par les sédiments et les végétaux augmentent au cours du temps, en particulier lorsque ces écosystèmes sont sains et en bonne santé.

 

 

 

Ces écosystèmes sont-ils tout aussi efficaces que les forêts dans la séquestration du carbone ?  

 

On sait que les marais salés, les mangroves ou les herbiers stockent le carbone 10 à 20 fois plus que les forêts tempérées ou boréales. Lorsque que les forêts séquestrent moins de 10 g de CO2 par mètre carré et par an, les écosystèmes côtiers en retiennent 100 à 200 g. Néanmoins ces écosystèmes représentent une partie moins importante de la surface du globe que les océans ou les forêts. Si certaines études indiquent qu’on obtient un stockage de carbone équivalent aux forêts, les travaux se poursuivent pour mieux quantifier cette séquestration et la part du carbone relâchée vers l’atmosphère.  

 

 

 

Comment comptabiliser le carbone stocké puis relargué ? 

 

C’est extrêmement complexe. Nous travaillons avec d’autres scientifiques à la meilleure compréhension du rôle des zones côtières dans ce cycle du carbone. La principale difficulté vient du fait que nous avons une très forte hétérogénéité spatiale et temporelle. Les échanges de carbone interviennent au niveau de multiples interfaces terrestre-aquatique. Si on sait par exemple que l’océan côtier représente un puits de carbone incontestable grâce à sa production primaire phytoplanctonique, les estuaires émettent, quant à eux, d’importantes quantités de CO2 vers l’atmosphère du fait de l’intense minéralisation de la matière organique qui existe dans ces eaux turbides, c’est-à-dire troubles, limitant la photosynthèse. Entre ces écosystèmes, se trouvent les marais et les vasières intertidales1. Là, de multiples échanges horizontaux et verticaux de carbone existent au sein et entre les compartiments terrestre, aquatique et atmosphérique aux échelles du jour et de la nuit, de la marée, de la saison et de l’année. Ces échanges particulièrement complexes et dynamiques ne peuvent alors être appréhendés que de façon intégrative et multidisciplinaire en faisant appel à des équipes de géographes, de géologues ou d’écologues pour mieux préciser leurs statuts de puits ou source de carbone. 

 

 

 

Il semblerait néanmoins que la biodiversité marine joue un rôle clé dans la séquestration du carbone.  

 

Incontestablement si les débats portent sur la qualification des processus et la quantification des échanges, ils ne retirent rien aux services écosystémiques que nous retirons de cette biodiversité. Si son érosion se poursuit, la capacité à capturer efficacement le carbone de l’atmosphère pourrait être compromise, ce qui aurait pour conséquence d’augmenter les émissions de gaz à effet de serre et d’intensifier l’acidification des eaux côtières. Malheureusement, ces écosystèmes ne sont pas épargnés par le changement d’usage des terres. D’après les chiffres de l’Union internationale pour la conservation de la nature (UICN), on sait par exemple que chaque année, près de 2 % des mangroves disparaissent et contribuent au relâchement de 120 millions de tonnes de CO2 dans l’atmosphère. 

 

 

 

Est-il possible de restaurer cette biodiversité ?  

 

Depuis les années 1990, les surfaces des herbiers marins ont diminué de moitié à travers le monde. Ceci est à la fois dû à des pressions anthropiques, mais aussi à une pression de parasitisme. Pour protéger ces zones, un certain nombre d’actions ont été mises en place, comme aux États-Unis sur la côte de Virginie où se trouve le site de South Bay choisi pour faire partie d’un vaste projet de restauration des herbiers initié au début des années 2000. À partir d’un simple vestige découvert dans une baie en bord de mer au large de la côte est, The Nature Conservancy et le Virginia Institute for Marine Science ont diffusé plus de 72 millions de graines pour aider à accélérer la propagation naturelle de la zostère (Zostera marina), qui couvre aujourd’hui 13,5 km2. Une étude publiée dans Plos One a montré que ces prairies sous-marines restaurées devraient accumuler du carbone à un taux comparable à celui mesuré dans les prairies sous-marines naturelles. C’est extrêmement encourageant.

 

 

« Préserver les forêts marines pour contribuer aux équilibres de la biodiversité côtière »

par Thierry Thibaut, Maître de Conférences, Aix-Marseille Université, Mediterranean Institute of Oceanographie (MIO), Marseille. Travaillant sur le projet Marfor de Biodiversa.

 

 

« Si les forêts marines d’algues (kelps) ne jouent pas un rôle direct dans l’atténuation du changement climatique, elles y contribuent largement en permettant à la biodiversité côtière de se maintenir. Comme les forêts terrestres, elles abritent un très grand nombre d’espèces. Les forêts sous-marines de Kelps géants, par exemple en Californie, font plus de 40 mètres de haut et sont considérées comme le plus haut niveau trophique du monde avec ses sept à huit niveaux. Lors de perturbations d’origine naturelle ou antropique , plus la biodiversité est importante, plus l’écosystème a la possibilité de se régénérer. De même, lorsque l’écosystème est peu diversifié, les chances de le voir se reconstituer sont faibles. Ainsi assiste-t-on dans certaines zones abimées à des dénudements presque totaux, à cause d’herbivores comme les oursins qui y prolifèrent. Les forêts marines maintiennent donc de haut niveau de services écosystémiques, dont l’atténuation du changement climatique, en contribuant à préserver les écosystèmes côtiers qui sont pour certains des puits de carbone (herbiers de plantes à fleurs marines). C’est entre autres pour cela qu’il faut les préserver à un moment où on assiste à des déclins dans toutes les mers et tous les océans de ces écosystèmes côtiers, notamment en raison de la destruction irrémédiable des habitats due à la construction de ports, de marinas, parkings, mais aussi au surpâturage des herbivores et à une augmentation des températures. »

 

 

_______________

1 Zone au-dessus du niveau de l’eau à marée basse et sous l’eau à marée haute en d’autres termes, des vasières se situant dans le secteur des marées.

#ScienceDurable
Chaque mois, la FRB, ses instituts membres fondateurs et l’alliance AllEnvi mettent en avant les solutions de la recherche pour enrayer le déclin de la biodiversité. Suivez-nous sur notre page dédiée et sur nos réseaux sociaux #ScienceDurable
Chercheur

Pierre Polsenaere,

Docteur en biogéochimie et écologie côtière (Ifremer)

Buy Delta 8 Online Delta 8 near me Best Delta 8 Products