fermer
retour en haut de la page

Les aires marines partiellement protégées sont-elles des facteurs d’efficacité écologique ?

Les zones côtières du monde sont de plus en plus soumises à des pressions humaines nécessitant une gestion adaptée et stratégique. L’établissement d’aires marines protégées (AMP) est un outil couramment utilisé pour améliorer la conservation, la sécurité alimentaire et la gestion des pêches. L’étude des conséquences écologiques des aires intégralement protégées (c’est-à-dire des zones sans prélèvement) révèle que l’abondance et la taille des espèces exploitées sont généralement accrues et ce, même au-delà des zones protégées dans certains cas, grâce à un effet de débordement. Par ailleurs, ces aires intégralement protégées permettent le rétablissement des populations et des communautés de poissons et d’autres taxons marins assurant ainsi la préservation de la structure de l’habitat.

 

La mise en place de zones intégralement protégées a souvent entraîné des conflits entre les enjeux de conservation de la biodiversité et les objectifs socio-économiques, en particulier dans les zones exploitées par de nombreux utilisateurs et soumises à différents types d’usages. Ainsi, l’établissement d’aires partiellement protégées, dans lesquelles certaines activités extractives peuvent être autorisées, est devenue une option favorisée par de nombreux décideurs, car plus facile à mettre en place au vu des objectifs à la fois socio-économiques et écologiques affichés. À la suite des accords et engagements internationaux, de plus en plus d’aires marines protégées sont en cours de création, mais la plupart ne sont que partiellement protégées. Il est donc urgent de déterminer quelles formes de protection partielle peuvent apporter des avantages socio-économiques tout en conservant une pertinence en termes de protection de la biodiversité.

 

Les aires partiellement protégées dépendent du contexte et leurs réglementations varient en fonction des objectifs de gestion qui vont, à leur tour, affecter leur efficacité écologique.

 

Un nouveau système de classification des aires protégées en fonction des activités commerciales et récréatives autorisées a été récemment développé (Horta e Costa et al., 2016). Dans ce système, les aires protégées, partielles et intégrales, sont classées en fonction des impacts cumulés des activités autorisées. Il est donc essentiel de comprendre les conséquences écologiques des différents types de protection partielle, celles-ci étant très certainement liées à différents régimes de réglementation. Dans cet article, les chercheurs présentent une nouvelle approche pour étudier et déduire comment une diversité de niveaux de protection partielle peut entraîner différents niveaux d’efficacité écologique. Ils ont également examiné comment les caractéristiques des aires protégées (âge et taille) peuvent influer sur l’efficacité des zones partiellement protégées, ou comment les caractéristiques spécifiques aux aires protégées multi-zones, telles que la présence d’une zone intégralement protégée adjacente, peuvent influer sur l’efficacité de la protection partielle.

 

Les scientifiques alertent l’humanité sur les liens entre microorganismes et changement climatique

À l’occasion des 60 ans du BRGM, service géologique national et membre fondateur de la FRB, la FRB revient sur l’importance cruciale des microorganismes en mettant en avant une synthèse parue au mois de juin dernier dans la revue Nature et intitulée : « Les scientifiques alertent l’humanité sur les liens entre microorganismes et changements climatiques ».

 

Cette synthèse de connaissances rappelle le rôle central des microorganismes dans les causes biologiques du changement climatique. Elle montre comment ceux-ci affectent le climat mais aussi comment, par rétroaction, ils sont affectés par les changements globaux.

 

Les auteurs appellent à ce que cette « majorité microscopique » ne soit plus « l’éléphant invisible dans la pièce ». Les enjeux sont trop importants : intégrer leur fonctionnement, c’est se permettre de comprendre comment les êtres vivants peuvent s’adapter aux changements climatiques. À défaut, la science n’aura qu’une compréhension limitée de la biosphère et de ses réponses à ces changements, ce qui compromettra les efforts déployés dans ce domaine pour créer un avenir écologiquement durable.

 

Retrouvez la synthèse complète dans les ressources téléchargeables ci-dessous. 

Coup de vieux sur l’Anthropocène

Comment les humains ont changé la face de la Terre

Les données archéologiques montrent que les changements anthropiques ont commencé plus tôt et se sont répandus plus vite qu’estimé précédemment.

___

 

L’Anthropocène est la période au cours de laquelle les activités humaines ont acquis une influence majeure sur le changement climatique et l’environnement. Il est difficile d’estimer le début de cette ère, et en particulier d’estimer l’incidence de l’Homme avant la période historique et les écrits associés. L’hypothèse avait déjà été formulée que la déforestation préhistorique et la riziculture pourraient expliquer l’augmentation préindustrielle des concentrations de méthane et de dioxyde de carbone dans l’atmosphère il y a environ 7 000 ans. Pour le dernier millénaire, les chercheurs se basent sur des documents historiques et, pour la période précédente, sur les observations archéologiques et paléo-écologiques. Les données archéologiques sont d’une grande importance mais jusqu’à récemment il était difficile d’en retirer des tendances globales.

 

Les travaux de Stephens et al. rapportés ci-dessous suggèrent que la Terre avait déjà été considérablement transformée par les activités humaines il y a 3 000 ans. Ce jalon temporel pour les changements d’origine anthropique de la couverture terrestre est en accord avec les interprétations issues de l’analyse de plusieurs autres sources de données (par exemple, les reconstructions des pertes de forêts en Europe tempérée) et conforte largement l’hypothèse de Ruddiman et al. en 2016 qui voyaient une origine anthropogénique dans le réchauffement préindustriel de l’Holocène tardif.

A contrario, l’utilisation de la base de données historique sur l’environnement mondial (HYDE, Klein Goldewijk et al., 2017), qui simule la couverture terrestre mondiale passée, abouti à des conclusions en contradiction avec celles de Stephens et al. en mettant en avant un faible volume d’impacts anthropiques à l’époque préhistorique.

 

Ces différences dans les conclusions des deux types d’études peuvent être dues aux biais associés aux données archéologiques qui proviennent d’endroits habités par l’Homme et ne renseignent pas directement sur l’état des zones sauvages. Les enseignements issus notamment de données paléo-écologiques (pollens) devraient conduire à d’utiles comparaisons de dates.

 

Enfin, si de grandes régions ayant eu une longue histoire d’agriculture et de pastoralisme (Europe et Chine par exemple) au cours des six derniers millénaires devraient montrer des trajectoires globales similaires pour le changement de couverture du sol, quelle que soit la source de données utilisée, ce n’est pas le cas pour beaucoup d’autres régions. En Europe tempérée et dans le nord-est de la Chine, le modèle HYDE indique une augmentation exponentielle des terres agricoles et des pâturages il y a environ 1 000 ans alors que les résultats ArchaeoGLOBE pour ces régions font apparaître une importante conversion de terres d’origine humaine il y a 3 000 ans. Quant aux analyses polliniques, qui permettent une estimation des terres libres de toute empreinte, elles établissent plutôt cette augmentation entre 1 000 et 3 000 ans. Quelle que soit la méthode utilisée, les tendances temporelles se ressemblent uniquement dans la zone de forêt boréale européenne.

 

Quoiqu’il en soit, les résultats très impressionnants des analyses collaboratives du type « big data » effectuées par le consortium ArchaeoGLOBE indiquent que la transformation humaine de la surface de la Terre a commencé bien avant ce que certains chercheurs appellent « la grande accélération » et devraient inciter la communauté scientifique à raisonner sur un plus long terme les émissions de carbone et l’évolution de l’utilisation des terres.

 

Du déclin au rétablissement de la biodiversité : l’urbanisation et l’avenir de la conservation de la biodiversité

Pour inverser les tendances dramatiques actuelles, l’Ipbes, dans son évaluation mondiale de la biodiversité et des services écosystémiques, pose la question du rôle de la démographie humaine et de la perpétuation de systèmes de production non durables et appelle à des changements systémiques majeurs.

Peu de personnes informées doutent encore aujourd’hui de la nécessité d’une réflexion de fond sur l’évolution de nos stratégies socio-économiques comme cadre conceptuel pouvant guider l’action en faveur de la biodiversité et parallèlement du climat. Les scénarios démographiques et socio-économiques prennent alors toute leur importance pour évaluer le futur de la biodiversité et la pertinence des orientations politiques qui permettront de la sauvegarder. Qui dit orientations politiques, dit choix de société et donc nécessité d’une libre expression et d’un libre choix des citoyens. Même si la science ne porte pas une vérité, mais des théories et des hypothèses fondées sur l’analyse des données, elle doit être un élément majeur pour éclairer tant l’opinion que les décideurs.

Dans ses efforts de « porté à connaissance », la FRB se doit d’apporter sa contribution aux riches et intenses débats en cours. L’an dernier, la transcription de l’article de Cazalis, Loreau et Henderson « Devons-nous choisir entre nourrir l’humanité et protéger la nature ? Modélisation des liens entre l’environnement et la démographie humaine » avait apporté un éclairage original. Ses conclusions montraient qu’un avenir souhaitable pour l’Humanité passait par la recherche d’un équilibre entre la production alimentaire et les services de régulation et, idéalement, le maintien de la population humaine à 10 milliards de personnes. Lors de la première « Nuit de la biodiversité », nous nous sommes en particulier interrogés sur la question de savoir si les solutions préconisées par les scientifiques pour enrayer le déclin de la biodiversité seront applicables tout en préservant nos systèmes et libertés politiques. Pour poursuivre la contribution à ces réflexions majeures dans une optique aussi ouverte que possible, la FRB propose la transcription d’un article issu des réflexions de trois « conservationnistes » américains, Sanderson, Walston et Robinson.

 

Pour résumer de manière très simplifiée, les auteurs disent que l’évolution de la démographie humaine et des consommations va conduire à un déclin majeur de la biodiversité d’ici 2050, rejoignant ainsi beaucoup de scénarios actuels dont ceux figurés dans le rapport de l’Ipbes, mais que la tendance croissante à l’urbanisation de la planète va conduire, par des processus multiples, à une stabilisation et même une décroissance de la démographie humaine et que ce qu’ils considèrent comme l’efficacité environnementale plus grande des villes aura un impact positif sur l’environnement et permettra à termes le rétablissement de la biodiversité.

En effet, d’ici 100 ans, les tendances de développement montrent également que l’essentiel de l’humanité vivra dans les villes et les agglomérations dans une économie de marché interconnectée et fondée sur la technologie. Un des scénarios crédibles est que la population humaine stagne ou diminue aux environs de 6 à 8 milliards de personnes et que leur concentration dans les villes entrainera des changements socio-environnementaux important et notamment, la diminution de l’extrême pauvreté, une meilleure maîtrise de la fécondité et une évolution des modes de vie et de pensée. Le modèle quantitatif développé dans l’étude de Sanderson et al., montre tout d’abord des impacts négatifs sur la biodiversité, entrainés par ces changements, puis une inversion de la tendance avec des impacts positifs sur l’environnement. Ainsi, bien qu’il soit parfaitement clair que les impacts environnementaux augmentent au fur et à mesure que les sociétés traversent la transition démographique et s’urbanisent, la transition en cours de la fécondité et la réduction de la pauvreté résultant de l’urbanisation suggèrent la perspective d’une stabilisation éventuelle et d’une réduction à long terme des impacts globaux sur l’environnement.

 

La synthèse complète est à découvrir dans les ressources téléchargeables ci-dessous. 

La pollution antibiotique des eaux de surface : occurrence et effets

Les antibiotiques sont des médicaments antimicrobiens qui tuent ou réduisent la croissance des bactéries. Ils sont utilisés en grande quantité depuis plusieurs décennies et la résistance d’agents pathogènes aux antibiotiques est depuis longtemps au cœur de la recherche en milieu clinique et, plus récemment, en recherche environnementale.

 

Les antibiotiques peuvent contourner les procédés de traitement de l’eau et peuvent se retrouver directement dans l’environnement. Ils sont détectés dans les rivières à des concentrations très faibles et dilués plus d’un million de fois par rapport aux concentrations observées dans le corps humain.

 

Cette étude démontre que les concentrations d’antibiotiques mesurées dans les eaux douces, quoique majoritairement inférieures aux concentrations cliniques efficaces, sont fortement susceptibles d’avoir des effets directs et indirects sur la composante microbienne des communautés aquatiques. En effet, même à de faibles concentrations, ces antibiotiques pourraient avoir des conséquences importantes pour les écosystèmes et pour la santé humaine. Les antibiotiques sont spécifiquement administrés pour traiter des infections ou pour augmenter les rendements notamment en élevage et en agriculture, mais, dans l’environnement, d’autres organismes vivants qui font partie de processus écologiques, tel que le cycle des nutriments, sont inévitablement exposés.

Schémas spatiaux et temporels de blanchissement de masse des coraux pendant l’Anthropocène

L’une des conséquences liées à l’augmentation des températures est le blanchissement corallien.

Le blanchissement se produit lorsque la densité des symbiotes algales, les zooxanthelles (Symbiodinium spp.), dans les tissus d’un hôte corallien diminue drastiquement à la suite d’un stress environnemental, révélant le squelette blanc du corail sous-jacent. La survie des coraux blanchis est alors compromise physiologiquement et nutritionnellement. Un blanchissement prolongé sur plusieurs mois conduit à des niveaux élevés de mortalité corallienne. La modélisation du climat mondial et les observations satellitaires indiquent également que les conditions thermiques requises pour le blanchissement des coraux prévalent de plus en plus, laissant présager que les zones de refuge, indemnes de blanchissement, pourraient disparaître au milieu du siècle.

 

Ces épisodes de blanchissement corallien, de plus en plus récurrents, et la mortalité des coraux qui en découle sont des phénomènes récents causés par l’impact anthropique. Ce qui, jusque dans les années 1980, n’était qu’un phénomène observable à l’échelle locale (quelques dizaines de kilomètres), causé par des facteurs de stress locaux (inondations d’eau douce, sédimentation ou encore temps inhabituellement froid ou chaud) est devenu un phénomène observable à l’échelle régionale (> 1000 km) et globale lié aux pressions anthropiques. C’est ce que révèle les bandes de croissance des coraux âgés des Caraïbes : les distorsions synchrones des dépôts squelettiques (bandes de stress) le long d’un tronçon de 400 km du récif mésoaméricain n’ont été trouvées que dernièrement suite aux conditions extrêmement chaudes.

 

Un des résultats majeurs de l’étude « Schémas spatiaux et temporels de blanchissement de masse des coraux pendant l’Anthropocène », publiée dans Science, est la mise en évidence de l’augmentation spectaculaire de la fréquence et de l’intensité des phénomènes de blanchissement corallien qui atteignent des niveaux très élevés et quasiment irréversibles.

 

Les plantes favorisent-elles leurs parents ?

Les comportements de préférence ou de protection entre parents ont été largement documentés chez les animaux et même expliqués en termes d’avantage évolutif. Ainsi les individus apparentés trouveraient avantage à collaborer pour transmettre leurs gènes.

Il y a plus de dix ans, une biologiste canadienne avait émis l’idée qu’il pouvait en être de même pour les plantes. Cependant, comme ces dernières ne possèdent pas le système nerveux qui permet aux animaux de reconnaître leur parentèle, sa théorie n’a pas été considérée comme sérieuse. Depuis, la science a démontré que les plantes pouvaient distinguer les racines relevant du “soi” et les racines relevant du “non-soi”, ouvrant une brèche vers un élargissement des perspectives en matière de comportement des plantes.

Les travaux scientifiques récents présentés par Elisabeth Pennisi dans une synthèse pour le journal Science en janvier 2019 vont encore plus loin.

 

Les conséquences pratiques que sous-tendent les premières études sur la reconnaissance familiale chez les plantes et ses conséquences ont suscité l’intérêt de la communauté scientifique. Les mécanismes en jeu pour favoriser les individus apparentés sont divers : certaines espèces limitent l’étendue de la propagation de leurs racines, d’autres modifient le nombre de fleurs qu’elles produisent et quelques-unes inclinent ou déplacent leurs feuilles pour minimiser l’ombrage des plantes voisines. Néanmoins, les questions persistent : une plante identifie-t-elle un parent génétique ou reconnaît-elle simplement que sa voisine est plus ou moins semblable à elle-même ?

 

“Il semble que chaque fois qu’un scientifique cherche un effet de préférence parentale chez les plantes, il le trouve”, a déclaré André Kessler, un spécialiste en écologie chimique à l’université de Cornell.

 

Un des premiers exemples intéressants est celui de la sauge buissonnante (Artemisia tridentata) en Amérique du nord. Attaqués par des herbivores, les arbustes libèrent des substances chimiques volatiles qui poussent l’arbre voisin à produire des composés toxiques pour leurs ennemis communs. L’écologue Richard Karban, de l’Université de Californie à Davis, s’est demandé si les parents étaient prévenus de manière préférentielle. Il avait déjà été établi que les buissons se divisaient en deux “chémotypes”1, émettant soit du camphre soit de la thuyone lorsque leurs feuilles sont endommagées. L’équipe a montré que les chémotypes étaient héritables, ce qui en faisait un signal potentiel de reconnaissance de parentèle. En 2014, les chercheurs ont indiqué que, lorsque les substances volatiles d’une plante présentant un chémotype donné étaient appliquées sur le même type de plante, ces plantes produisaient des défenses anti herbivores plus fortes et présentaient beaucoup moins de dommages causés par les insectes que lorsque les substances volatiles provenaient d’une plante de l’autre chémotype.

 

Un second exemple est fourni par la moutarde Arabidopsis thaliana. Il y a environ huit ans, Jorge Casal, biologiste spécialiste des plantes à l’université de Buenos Aires, a remarqué que les plants d’Arabidopsis poussant aux côtés de parents modifient l’arrangement de leurs feuilles pour réduire l’ombrage sur leurs voisines, mais qu’elles ne le font pas lorsque les voisins ne leur sont pas apparentés. Leur perception de la présence de parents était toutefois un mystère. En 2015, l’équipe de Casal a découvert que la force avec laquelle la lumière est réfléchie sur les feuilles voisines donne une indication de la parenté et initie les réarrangements dans les feuilles. Des membres d’une même famille ont tendance à produire des feuilles à la même hauteur et par conséquence à renvoyer plus de lumière vers leurs voisines. L’équipe de chercheurs a mis en évidence que cette réduction d’ombrage favorisait une croissance plus vigoureuse et une meilleure production de graines.

Ce fut le premier cas de reconnaissance des parents chez les plantes où la relation complète incluant la reconnaissance de la parentèle (signal et récepteur) et ses conséquences a été mis en évidence. Depuis lors, Casal et son équipe ont montré en 2017 dans les Actes de la National Academy of Sciences que, lorsque des tournesols apparentés sont plantés les uns à côté des autres, ils s’organisent également pour ne pas se gêner entre eux. Les tournesols inclinent leurs tiges en alternance d’un côté ou de l’autre de la rangée. Pour pousser encore plus loin l’expérience, ils ont planté entre 10 et 14 plantes apparentées par mètre carré – une densité plus élevée que dans les plantations commerciales – et ont obtenu 47 % d’huile en plus lorsque les plantes étaient libres de leur mouvement (et donc capables de s’éloigner les unes des autres) comparées aux mêmes plantes contraintes de pousser droit.

 

Plus tard, Susan Dudley, écologiste de l’évolution des plantes (university McMaster à Hamilton, au Canada) a déclaré : “nous devons reconnaître que les plantes ne détectent pas seulement s’il fait jour ou nuit, ou si elles ont été attaquées, mais qu’elles reconnaissent aussi avec qui elles interagissent”. Estimant que les mêmes forces évolutives qui conduisent à favoriser la parentèle devraient s’appliquer aux plantes, la chercheuse a conduit des expérimentations avec de la roquette des mers (Cakile edentula), une plante succulente trouvée sur les plages nord-américaines. Elle a ainsi publié en 2017 une étude démontrant que le système racinaire de la roquette était moins développé lorsqu’elle était cultivée en pots avec des plantes apparentées par rapport à la même roquette cultivée avec des plantes non apparentées de la même population. Elle a suggéré que la plante avait réduit la concurrence de ses propres racines en laissant plus de place à ses parents pour obtenir de la nourriture et de l’eau. Si son étude a été vivement critiquée tant en termes de rigueur statistique qu’en termes de conception, néanmoins d’autres chercheurs ont depuis publié des découvertes similaires.

 

Le 22 mai 2018, Rubén Torices et ses collègues de l’université de Lausanne (Suisse) et du Conseil national de la recherche espagnole ont publié dans Nature Communications les résultats d’une étude démontrant un phénomène de coopération chez une autre brassicacée d’ornement, Moricandia moricandioides. Après avoir cultivé 770 plantes en pot, seules ou avec trois ou six voisins de parenté variable, l’équipe a mis en évidence que les plantes cultivées avec des parents produisaient plus de fleurs, ce qui les rendaient plus attrayantes pour les pollinisateurs. Les expositions florales étaient particulièrement élevées dans les pots les plus peuplés. Torices, aujourd’hui enseignant à l’université King Juan Carlos à Madrid, qualifie ces effets “d’altruistes”, car chaque plante abandonne individuellement une partie de son potentiel de production de graines pour dépenser plus d’énergie dans la production de fleurs avec une présomption d’une meilleure fertilisation au bénéfice de la communauté.

 

Chui-Hua Kong, spécialiste en écologie chimique (université d’agriculture de Chine, Beijing), exploite un effet similaire pour stimuler les rendements chez le riz. Son laboratoire étudie des variétés de riz émettant des produits chimiques à effet désherbant à partir de leurs racines, mais qui obtiennent des rendements trop faibles pour remplacer les variétés couramment cultivées qui nécessitent des herbicides. Toutefois, en septembre 2018, à l’issue de tests de terrain conduits pendant trois ans, les chercheurs ont publié dans le journal New Phytologist des résultats démontrant que des variétés de riz “autoprotectrices” (capables de reconnaître leur parentèle), avaient des rendements augmentés de 5 % lorsqu’elles étaient cultivées avec des parents, plutôt qu’avec des plantes non apparentées.

 

Pour tester l’approche à plus grande échelle et confirmer que ces liens familiaux suggérés pouvaient être exploités pour améliorer les rendements des cultures, les chercheurs ont répété l’expérience dans des rizières du sud de la Chine.

 

Brian Pickles, écologiste à l’université de Reading au Royaume-Uni, propose, quant à lui, que la reconnaissance de la parentèle puisse aider les forêts à se régénérer. En traçant les flux de nutriments et les signaux chimiques entre les arbres reliés par des champignons souterrains, il a montré que les sapins nourrissent préférentiellement leurs parents et les avertissent des attaques d’insectes. Les résultats suggèrent qu’une famille de sapins grandirait plus rapidement qu’une communauté de sapins non apparentés.

 

Pour certains biologistes, ce nouveau paradigme des plantes en communication et en coopération nécessite encore la production de preuves. “Je ne pense pas que nous ayons actuellement des preuves convaincantes d’une reconnaissance parentale chez les plantes”, déclare Hélène Fréville, biologiste des populations à l’Inra de Montpellier. Laurent Keller, biologiste de l’évolution à l’université de Lausanne, a montré au contraire que les signes apparents de reconnaissance de la parentèle chez Arabidopsis provenaient plutôt de différences innées entre les plantes. Il appelle à plus de rigueur dans les études pour écarter d’autres explications potentielles, tout en prédisant que des preuves plus solides de la reconnaissance de la parentèle chez la plante émergeront. Karban, lui, est déjà pleinement convaincu. “Nous apprenons que les plantes sont capables d’un comportement beaucoup plus sophistiqué que nous avions pensé, c’est vraiment fascinant”.

 

1. Un chémotype est une entité chimique distincte au sein d’une même espèce (ensemble d’individus interféconds)

La compétition mondiale entre les pêcheries et les oiseaux marins persiste malgré leur déclin généralisé

En 2011, l’article de Cury et al. Global Seabird Response to Forage Fish Depletion — One-Third for the Birds soulignait combien les oiseaux marins étaient dépendants des ressources marines dans certaines régions du monde. Grémillet et ses collègues démontrent aujourd’hui que la compétition entre les oiseaux marins et les pêcheries est un facteur de stress significatif à l’échelle globale sur la période 1970-2010, pour une communauté mondiale d’oiseaux marins qui a décliné de 70 % depuis 1950 (Paleczny et al., 2015).

Modification des écosystèmes et zoonoses dans l’Anthropocène

Avec près de 60 % des agents pathogènes humains et environ 60 % des maladies infectieuses émergentes classés comme zoonotiques, c’est-à-dire transmises des animaux à l’homme (Jones et al., 2008 ; Woolhouse & Gowtage-Sequeria, 2005), ces pathologies (grippe aviaire, VIH SIDA, SRAS et Ebola, etc.) représentent un enjeu croissant de santé publique au niveau mondial (Jones et al., 2008).

 

Les maladies, dont les zoonoses, sont des processus écologiques naturels au sein des écosystèmes. Leur éradication peut ne pas avoir que des effets positifs car d’autres parasites ou pathogènes sont susceptibles d’occuper les niches laissées vacantes (Lloyd-Smith, 2013).

En raison de la multiplicité des espèces et des échelles impliquées (Johnson, de Roode et Fenton, 2015), l’écologie des communautés associée à l’épidémiologie peut amener à une meilleure compréhension des processus et des dynamiques impliqués dans les épidémies de zoonoses et faciliter une meilleure gestion des risques liés aux maladies zoonotiques (Cunningham et al., 2017 ; Johnson et al., 2015 ; Young et al., 2017).

 

Par le biais d’exemples, les auteurs illustrent la nécessité de prendre en compte, en plus des exigences écologiques des agents pathogènes zoonotiques, d’une part, l’impact des interventions humaines et d’autre part les types d’écosystèmes concernés (urbain, péri-urbain et forestier) pour se préparer à l’émergence de ces zoonoses dans l’Anthropocène et les gérer efficacement.

Devons-nous choisir entre nourrir l’humanité et protéger la nature ? Modélisation des liens entre l’environnement et la démographie humaine

La capacité de la population humaine à continuer de croître dépend fortement des services écosystémiques fournis par la nature. Or ceux-ci se dégradent de plus en plus à mesure que le nombre d’individus augmente, ce qui pourrait menacer le bien-être futur de la population humaine, comme cela a déjà été constaté par le passé avec la disparition de plusieurs civilisations humaines.

 

En construisant un modèle dynamique pour conceptualiser les liens entre la proportion mondiale des habitats naturels et la démographie humaine à travers quatre catégories de services écosystémiques (approvisionnement, réglementation, loisirs culturels et informationnels) les chercheurs ont essayé de déterminer si la trajectoire actuelle du développement humain pouvait conduire à un effondrement similaire.

 

Ils ont montré en premier lieu qu’il existe généralement un compromis entre la qualité de vie et la taille de la population humaine qui suit quatre scénarios :

  • Deux scénarios de déclin de la population :
    • Dans le cas d’une production alimentaire forte au détriment des services de régulation tels que la qualité de l’air et de l’eau, pollinisation ou la régulation des maladies, entraînant une augmentation du taux de mortalité et une dégradation de la nature
    • En cas de surexploitation des terres entraînant une diminution de la production alimentaire ou de baisse de l’efficacité de la production alimentaire qui ne couvre plus les besoins de la population
  • Un état de famine stable où la population continue de croître avec une faible alimentation
  • Un futur souhaitable en cas de compromis entre la conversion des terres pour nourrir toute la population et la conservation de la biodiversité et des services écosystémiques

 

Les deux scénarios de déclin sont dictés par des processus antagonistes entre conversion des terres pour l’agriculture et conservation des milieux naturels. Cependant, les deux sont incontestablement négatifs pour le bien-être humain et la nature : la conversion d’un trop grand nombre de terres naturelles en terres exploitées a des conséquences négatives sur les services de régulation et donc sur la population. Au contraire, la conservation de la nature préserve les services de régulation, mais est responsable de famine, si elle ne laisse pas de place à la production agricole.

 

La seule solution pour un futur souhaitable est de préserver à la fois les services écosystémiques d’approvisionnement et de régulation par un compromis équilibré entre la conservation de la nature et la conversion des terres pour l’agriculture. Ce scénario intermédiaire n’est possible qu’en évitant un emballement de la démographie et en conservant une population relativement « petite » autour de 10 milliards d’individus.

Comment mesurer la relation entre la biodiversité alimentaire et l’adéquation nutritionnelle des régimes alimentaires ?

En conséquence, les régimes alimentaires humains qui étaient composés d’une grande variété de plantes et d’animaux ont progressivement été remplacés par des régimes alimentaires composés principalement d’aliments transformés et comprenant un nombre limité de denrées alimentaires (Drewnowski et al., 1997).

Ces nouveaux régimes sont sources de nouvelles maladies, dites maladies métaboliques non transmissibles (obésité, diabètes, hypertension, maladies cardio-vasculaires) et responsables de véritables épidémies au niveau mondial. Il est en effet établi que les régimes de faible qualité nutritionnelle constituent le principal facteur de risque de mauvaise santé dans le monde entier (Abajobir et al., 2017) et sont corrélés à des indicateurs socio-économiques et politiques tels que le revenu, l’éducation, la cohésion et les inégalités sexuelles ou sociales.

 

Alors qu’on estime à 300 000 les espèces de plantes comestibles disponibles pour l’Homme, plus de la moitié des besoins énergétiques mondiaux sont actuellement satisfaits par quatre cultures : le riz, les pommes de terre, le blé et le maïs.

La biodiversité agricole et sauvage revêt un aspect essentiel pour la bonne nutrition humaine et la durabilité des systèmes alimentaires. Cette biodiversité contribue notamment à la résilience des exploitations agricoles, en particulier face aux aléas tels que les effets du changement climatique, les épidémies et les fluctuations des prix du marché. Dans les pays objets de l’étude, l’apport d’aliments issus de cueillette dans la nature est une source complémentaire de résilience des systèmes alimentaires, en particulier pendant la période où les récoltes sont les moins abondantes.

De manière surprenante, les points chauds (“hot spots”) de biodiversité sauvage et agricole mondiaux coïncident souvent avec des zones de grande pauvreté, de forte dégradation des écosystèmes et de malnutrition. Les populations qui s’y trouvent vivent ainsi souvent dans un environnement dégradé où l’érosion de la biodiversité sauvage et cultivée réduit la diversité alimentaire disponible et donc diminue la qualité des régimes en fonction des saisons, entrainant des problèmes de malnutritions.

 

En restaurant les écosystèmes et leurs fonctions, la gestion et l’usage durable de la biodiversité alimentaire cultivée et sauvage peut remédier aux carences en micronutriments des populations vulnérables par le soutien de systèmes de production avec une plus grande diversité d’espèces consommables.

L’extinction paradoxale des espèces les plus charismatiques

Cette question est fondamentale, surtout lorsqu’on sait qu’une des difficultés rencontrées pour la conservation des espèces est ce manque de soutien et de mobilisation du public. Par exemple, 20 millions d’américains sont descendus dans la rue pour la première manifestation “Jour de la Terre” en 1970, mais aucune mobilisation similaire n’a été constatée au 21e siècle pour la biodiversité et ce, malgré les messages redondant sur l’extinction.

 

Une opinion largement répandue, dans le grand public, mais aussi dans la littérature scientifique, est que les efforts de conservation profitent de manière disproportionnée aux espèces charismatiques et que, par conséquent, leur protection est suffisante et acquise. Plusieurs publications scientifiques recommandent par exemple de ne pas concentrer l’effort de conservation sur ces espèces, mais de s’intéresser aussi aux espèces moins connues ou même de privilégier des unités plus intégratives et moins visibles, comme les écosystèmes ou les fonctions écosystémiques dans les politiques de conservation (Keith et al., 2015).

Or, en étudiant 10 des espèces les plus charismatiques, l’étude a mis en évidence qu’elles couraient un risque élevé et imminent d’extinction dans la nature. Il apparait que le public ignore en réalité la situation de ces animaux, les résultats suggérant que cela pourrait être dû à la perception biaisée de leur abondance, émanant d’un décalage entre leur profusion dans notre culture et leur profusion réelle dans la nature. En utilisant librement l’image d’espèces rares et menacées pour la commercialisation de leurs produits, de nombreuses entreprises participent à cette perception biaisée. Les chercheurs émettent l’hypothèse que cette perception biaisée nuit involontairement aux efforts de conservation, d’une part parce que le public ignore que les animaux qu’il préfère font face à un danger d’extinction imminente et qu’il n’en perçoit donc pas le besoin urgent de conservation et que, par ailleurs, l’existence dans l’esprit du public de populations virtuelles renforce la perception que les populations réelles ne sont pas menacées. Cette sorte de compétition entre populations virtuelles et réelles, paradoxalement, diminue les efforts de conservation nécessaires et par conséquent accentue le risque d’extinction de ces espèces.

 

Cette situation devrait durer tant que cette utilisation ne sera pas accompagnée de campagnes d’informations adéquates sur les menaces auxquelles ces espèces font face. Les auteurs proposent donc de compenser ces effets préjudiciables sur les efforts de conservation en captant une partie des bénéfices associés à l’utilisation commerciale de l’image de ces espèces.

Les données de la biodiversité : biais taxonomiques en lien avec les préférences sociétales

Alors que la protection de la biodiversité s’impose de plus en plus comme un enjeu majeur tant pour les décideurs politiques que pour les acteurs de la société civile (des entreprises aux associations), les discussions autour de la biodiversité se concentrent uniquement sur un petit sous-ensemble d’espèces et la majorité des Eucaryotes reste inconnue ou ignorée. C’est ce qu’on appelle un biais taxonomique et, quoiqu’omniprésent dans la recherche sur la biodiversité, il est peu étudié, peu compris et donc peu ou pas pris en compte dans les conclusions de la recherche alors même qu’il est connu et que ses conséquences peuvent empêcher d’élaborer des conclusions couvrant l’ensemble du vivant et de mettre en place des programmes de protection efficaces.

 

Ainsi, certains organismes – principalement des plantes et des vertébrés – sont surreprésentés dans divers domaines scientifiques, car ils sont considérés comme écologiquement plus importants que d’autres et de ce fait sont plus susceptibles de lever des fonds. Or, il a été scientifiquement démontré que les espèces rares, petites ou non charismatiques, jouent parfois un rôle essentiel dans les écosystèmes et ne pas les considérer, par manque de connaissances, représente une entrave à la compréhension globale de la biodiversité à l’échelle mondiale, nuit à la mise en place de plans de conservation efficaces et ralentit la découverte de nouveaux produits ou propriétés chez les espèces sauvages.

 

L’étude de la biodiversité est une tâche ardue et nécessite de déployer une main-d’œuvre considérable pour rassembler et analyser les données sur la biodiversité. Cependant, alors que la biodiversité diminue à un rythme sans précédent, le biais taxonomique représente un fardeau pour les études sur la biodiversité qu’il est urgent de prendre en compte et de dépasser pour avoir une idée plus exacte de la diversité du vivant.

 

Répartition globale de la biomasse au sein de la biosphère

La quantification de l’abondance de chaque composant individuel est essentielle pour décrire un système complexe comme la biosphère (c’est-à-dire les espèces ou les groupes taxonomiques plus larges). Les premiers efforts pour estimer la biomasse mondiale ont principalement porté sur des groupes uniques comme les plantes, les procaryotes1 (Whitman et al., 1998) ou les poissons avec une révision récente de leur biomasse grâce à de nouvelles techniques d’échantillonnage (Irigoien X et al., 2014). Il manque parfois des données sur des groupes importants comme les arthropodes.

Deux tentatives d’une comptabilité globale de tous les composants de la biomasse mondiale ont été publiées, celle de Whittaker et Likens au début des années 1970, qui n’incluait pas la biomasse bactérienne et fongique, et celle de Smil en 2013. Wikipedia fournit également une gamme d’estimations sur divers taxons. Mais aucune de ces études ne donne une vue complète et intégrée et c’est ce qui fait l’originalité du présent travail.

 

Le progrès des techniques de séquençage permet actuellement la détermination de la composition des communautés naturelles sur la base de l’abondance relative des génomes. L’amélioration de la télédétection autorise également une appréhension de l’environnement à l’échelle mondiale avec une résolution sans précédent. Enfin, les grandes expéditions comme l’expédition Tara Oceans ou les observatoires locaux (comme le Réseau national d’observatoires écologiques en Amérique du Nord) concourent aux efforts d’échantillonnage global et à la connaissance fine des habitats naturels.

 

La présente analyse est basée sur des centaines d’études portant sur les principaux groupes taxonomiques constituant le vivant. Les chercheurs ont choisi d’utiliser la biomasse terrestre comme mesure de l’abondance des différents groupes d’espèces (les taxons) et de leur importance relative au sein du vivant. Elle résume les connaissances actuelles sur la distribution de la biomasse mondiale.

 

La biodiversité favorise-t-elle la productivité des écosystèmes ?

Certains services essentiels à la vie et au bien-être humain fournis par les écosystèmes comme la production de nourriture, de combustibles, l’épuration ou la mise à disposition de l’eau, la production d’oxygène, la régulation des maladies sont le produit de processus biologiques rendus possibles par la diversité des organismes vivants qui les peuplent. À partir des années 1990, le déclin accéléré des espèces sauvages a suscité un effort concerté pour répondre à la question suivante : comment les changements dans la diversité biologique affectent-ils le fonctionnement des écosystèmes et la production de biens et services ?

Des méta-analyses réalisées sur la base de plus de 500 expériences montrent comment la diversité génétique, spécifique et fonctionnelle, influence le fonctionnement des écosystèmes. Elles ont pu mettre en évidence que des dispositifs expérimentaux incluant plusieurs espèces étaient, en moyenne, 50% plus efficaces et productifs que des systèmes mettant en jeu une seule espèce, et qu’ils étaient plus à même de fournir des biens et services essentiels.

 

L’idée que la biodiversité est le moteur du fonctionnement des écosystèmes, quoi qu’assez intuitive, n’avait pas encore été objectivée et pouvait dans certains cas rester controversée. Des critiques ont soutenu que les premières expériences réalisées ne contrôlaient pas de manière adéquate les variables confondantes, ce qui a conduit les chercheurs à améliorer leurs protocoles et leurs analyses au fil des années. Nonobstant ces améliorations, certains experts sont restés préoccupés par le fait que les expérimentations avaient été menées à des échelles trop petites, étaient trop limitées dans le temps et trop irréalistes dans leurs conditions pour être significatives dans le monde réel. D’autres ont suggéré que, bien que la biodiversité affecte les processus écosystémiques dans des expériences simplifiées, des effets similaires seraient peu probables dans la nature, ou seraient faibles comparés à la régulation de la productivité et de la stabilité des écosystèmes par les facteurs abiotiques, un processus bien documenté.

 

Les deux principales questions à résoudre restaient donc de déterminer :

  • ces différentes études sont-elles capables d’isoler statistiquement les effets de la biodiversité de ceux des autres facteurs environnementaux comme la variation du climat et des ressources qui contrôlent la fertilité des écosystèmes ?
  • est-ce que les effets de la biodiversité mis en évidence dans les expérimentations se produisent également dans la nature et, dans l’affirmative, sont-ils importants ou insignifiants ?

 

Ces questions étaient restées non résolues en partie parce que l’identification des causes, sans passer par des expérimentations, est notoirement difficile dans le cas de systèmes où les forçages sont complexes, en interaction et souvent non linéaires.

Pour lever ces interrogations, les auteurs présentent une synthèse de 133 estimations du rôle de la biodiversité dans la productivité des écosystèmes provenant de 67 études empiriques ayant mesuré la biodiversité et le fonctionnement des écosystèmes naturels dans 623 464 sites d’échantillonnage dans le monde.

Ces études ont bénéficié de nouvelles avancées analytiques pour quantifier les effets des espèces ou de la diversité fonctionnelle sur le fonctionnement des écosystèmes après contrôle statistique des co-variables environnementales. Les auteurs se sont concentrés sur la biomasse1 et la production à l’échelle des communautés en tant que fonctions écosystémiques, car ce sont les variables de réponse les plus fréquemment mesurées dans les expérimentations passées, et elles sont fondamentalement importantes pour la fourniture de presque tous les biens et services écosystémiques.

 

La synthèse de données a abordé trois questions :

  • les effets de la biodiversité sur la production de biomasse sont-ils détectables dans les systèmes naturels et, si oui, sont-ils en cohérence avec les prédictions des expérimentations et la théorie correspondante ?
  • les effets de la biodiversité dans les systèmes naturels sont-ils d’une ampleur comparable à ceux estimés dans des expérimentations contrôlées à petite échelle ?
  • comment les effets de la biodiversité se comparent-ils aux effets d’autres facteurs environnementaux majeurs à l’origine de la production de biomasse des écosystèmes ?

 

Premièrement, l’étude montre qu’une biodiversité plus élevée est communément associée à une production plus élevée de biomasse dans les écosystèmes naturels et que cette relation positive a tendance à être statistiquement plus significative lorsque les co-variables environnementales sont contrôlées.

Cette constatation va à l’encontre d’une critique courante des études de terrain reliant la biodiversité à la productivité, qui est que les corrélations entre la richesse spécifique et la biomasse des communautés pourraient n’être qu’un effet collatéral des conditions environnementales qui améliorent simultanément la diversité et la productivité. Si cette hypothèse de covariance était vraie, les effets apparents de la biodiversité sur la productivité devraient s’affaiblir ou disparaître lorsque les facteurs environnementaux sont pris en compte. Or, l’analyse montre le contraire. Parmi les études qui ne tenaient pas compte des co-variables, 69% ont détecté une relation significative entre la biodiversité et le fonctionnement des écosystèmes, tandis que cette proportion atteignait 82% lorsque les co-variables environnementales étaient contrôlées statistiquement. Pour tenir compte de la non-indépendance potentielle des données dans certaines études, les auteurs ont effectué 10 000 tirages au hasard et recalculé la proportion des études montrant des effets de diversité significatifs avec et sans prise en compte des co-variables. Ce test de ré-échantillonnage a confirmé qu’une proportion significativement plus élevée d’effets de diversité était détectée après la prise en compte des co-variables.

 

Deuxièmement, les auteurs ont constaté que, dans 75% des études, la relation entre la diversité et la production de biomasse était positive lorsqu’on contrôlait les co-variables, la plupart augmentant de façon monotone.

Ces résultats correspondent à des prédictions a priori de la théorie écologique ainsi qu’aux résultats de la plupart des expérimentations. Toujours selon une approche de ré-échantillonnage, la proportion d’études montrant des effets positifs de la diversité était significativement plus élevée parmi les études qui contrôlaient les co-variables environnementales, alors que les effets non significatifs étaient moins nombreux (P = 0,03) et que les effets négatifs sont restés inchangés (P = 0,33). Par conséquent, non seulement les observations reflètent qualitativement les résultats des expérimentations antérieures sur la biodiversité, mais l’accord entre les observations et les expérimentations augmente après la prise en compte des co-variables environnementales.

 

Après avoir réalisé un important travail afin de vérifier que les données des différentes études étaient comparables, les auteurs ont analysé l’intensité des effets de la biodiversité sur la productivité de la biomasse dans la nature. Malheureusement, dans de nombreux cas, les effets de la richesse spécifique sur la production de biomasse n’ont pas pu être croisées. Après élimination d’un certain nombre d’études les auteurs ont pu toutefois identifier des mesures comparables de l’incidence de la biodiversité pour quatre cas particuliers :

  • les effets de la richesse algale sur la production de biomasse phytoplanctonique ;
  • les effets de la richesse en plantes herbacées sur la biomasse des prairies ;
  • les effets de la richesse des essences forestières sur la production d’arbres ;
  • les effets de la richesse en invertébrés herbivores sur la biomasse algale dans les systèmes de zostères marines.

 

Les effets de la biodiversité dans les écosystèmes naturels se sont révélés plus forts que ceux documentés dans des expérimentations contrôlées pour les quatre comparaisons. Ce résultat résulte pour partie de l’éventail plus large de la diversité présente dans les études d’observation par rapport aux expérimentations.

Étant donné que les écosystèmes naturels présentent souvent des associations plus fortes entre la biodiversité et la production de biomasse que celles documentées dans les expérimentations, les auteurs ont étudié l’importance du rôle de la biodiversité par rapport aux facteurs abiotiques associés au changement global. Ils ont identifié 28 études de terrain qui ont fourni 65 estimations dans lesquelles les auteurs quantifiaient simultanément les effets statistiques de la biodiversité et des variables climatiques (généralement la température) sur la biomasse ou la productivité, et 10 études avec 22 estimations qui quantifiaient simultanément les effets de la biodiversité et la disponibilité des éléments nutritifs (généralement l’azote).

Lorsque les études séparaient statistiquement les effets, la biodiversité avait une incidence supérieure aux variables climatiques dans 51% des estimations de terrain et supérieure à celle des variables relatives aux éléments nutritifs dans 64% des estimations. Ces résultats restent robustes après la prise en compte de la non-indépendance des données (test de ré-échantillonnage). Étant donné que les travaux d’observation couvrent différentes aires latitudinales et longitudinales, la gamme des co-variables abiotiques n’est pas directement comparable dans toutes les études. Cependant, on note que plusieurs études qui vont de l’échelle continentale à l’échelle mondiale ont mis en évidence des effets de la biodiversité comparables ou plus forts que ceux du climat.

 

Compte tenu du scepticisme relatif à l’idée que la diversité des espèces puisse affecter la productivité des écosystèmes naturels, la force et la cohérence des résultats présentés ici n’étaient pas prévisible. Dans tous les cas, les auteurs ont démontré l’inverse des opinions exprimées pendant longtemps dans la littérature écologique. Les écosystèmes riches en espèces présentaient généralement une biomasse et une productivité plus élevées dans les données d’observation de terrain pour un large éventail de taxons et d’écosystèmes, y compris les plantes des prairies, les arbres, le phytoplancton et le zooplancton des lacs et les poissons marins.

 

Les associations positives observées entre la biodiversité et la production de biomasse dans la nature étaient :

  • plus fortes lorsque les co-variables étaient comptabilisées,
  • plus fortes que les effets de biodiversité documentés dans des expérimentations contrôlées,
  • et comparables ou plus fortes que les associations entre la productivité et le climat ou la disponibilité des éléments nutritifs qui sont considérés comme deux des facteurs majeurs influençant la structure et le fonctionnement des écosystèmes, et comme les principaux moteurs du changement global.

 

Ces résultats corroborent ceux d’une récente synthèse de données expérimentales, citée par les auteurs, démontrant que les effets de la biodiversité étaient comparables dans leur ampleur à ceux des principaux facteurs du changement mondial.

 

Ces résultats permettent d’étendre à un large éventail d’écosystèmes des conclusions similaires basées sur les données d’observation de forêts et de plantes de zones arides.

En effet, toutes les études incluses dans la présente synthèse ont utilisé des approches statistiques conçues  b. De plus, toutes les études incluses ici impliquaient des gradients de diversité résultants des processus d’assemblage de communautés naturelles, ce qui permettait de réfuter l’argument ancien selon lequel les effets de diversité sur la productivité sont des artefacts des combinaisons d’espèces aléatoires utilisées dans les expériences.

 

Comme pour toutes les analyses basées sur des données non expérimentales, on ne peut pas complètement exclure la possibilité que les études examinées aient négligé une ou plusieurs variables environnementales importantes augmentant la diversité et la production en parallèle, générant ainsi une corrélation parasite (non causale) entre elles. Les auteurs considèrent toutefois qu’il est peu probable que les différents écologues impliqués dans toutes ces études n’aient pas pris en compte les principaux moteurs de la production de biomasse dans les écosystèmes qu’ils étudient et connaissent bien.

Une limitation plus réaliste de cette synthèse est que, sauf rares exceptions, les études disponibles n’ont pas abordé le potentiel de rétroaction entre la richesse spécifique, la biomasse et les facteurs environnementaux tels que les ressources. De telles rétroactions pourraient générer des associations plus complexes entre la diversité et la productivité, et l’évaluation de leur fonctionnement dans la nature doit être un objectif pour les recherches futures.

 

En conclusion, la cohérence des résultats pour plusieurs taxons et écosystèmes au sein de centaines d’expérimentations et leur concordance avec les prévisions théoriques concourent collectivement à conclure que la biodiversité joue un rôle majeur en soutenant la productivité des écosystèmes terrestres.

Au regard de ces différents résultats et en lien avec l’utilisation de solutions fondées sur la nature, il est donc important que la biodiversité soit pleinement prise en compte dans les décisions de gestion et surtout dans les trajectoires de transformation de nos modèles agricoles, comme un facteur majeur de réussite de la transition agro-écologique.

 

___

1. La biomasse est la masse des organismes vivants dans un biotope particulier. 

[Synthèse] Production de bois-énergie et impacts sur la biodiversité européenne

Peut-on se passer des énergies fossiles et préserver la biodiversité ? Comme l’ont montré les échanges lors des journées FRB 2017 et de nombreux travaux de re- cherche sur le sujet, la réponse est loin d’être aisée. À l’occasion de la sortie du pro- chain rapport de l’IPBES sur l’état de la biodiversité en Europe et en Asie centrale, la FRB a synthétisé l’une des rares études à avoir compilé et analysé un ensemble de travaux sur la question de production de bois-énergie et de ses impacts poten- tiels sur la biodiversité européenne : Effects of fuelwood harvesting on biodiver- sity — a review focused on the situation in Europe de Bouget, Lassauce et Jonsell, 2012. Bien qu’il s’agisse d’une stratégie possible parmi d’autres, les auteurs se sont ici placés dans un contexte d’intensification de cette filière.

 

La maison est en feu

L’équipe a examiné attentivement la littérature scientifique, le financement de la recherche et les articles de presse des États-Unis, du Canada et du Royaume-Uni sur les changements climatiques et la biodiversité entre 1991 et 2016. Elle a constaté que la couverture médiatique du changement climatique est jusqu’à huit fois plus élevée que celle consacrée à la biodiversité, un écart que les différences entre les publications scientifiques sur l’un ou l’autre thème ne peuvent expliquer. Les chercheurs ont noté que la couverture médiatique sur le changement climatique est souvent liée à des événements spécifiques, du type plénière du Giec ou événement climatique exceptionnel, lien que l’on ne retrouve pas pour la couverture médiatique sur la biodiversité.

 

Les auteurs ont quantifié avec précision leurs observations et en ont dégagé des pistes d’action pour que les chercheurs et leurs services en charge de la communication puissent mieux communiquer les points saillants de leurs travaux au grand public et aux politiques.

 

Les aspects économiques et légaux de l’additionnalité des Paiements pour Services Environnementaux

Les Paiements pour Services Environnementaux (PSE) se sont imposés comme un des instruments-clé dans les politiques de protection de la nature. Derrière ces trois lettres maintenant bien connues, les PSE abritent néanmoins des concepts différents. L’article propose de distinguer entre la logique de “compensation” qui revient à payer les personnes pour qu’elles changent leur comportement et celle de “récompense” d’un comportement écologique vertueux. La première se rattache à l’efficience économique, autrement dit obtenir le plus de résultats à moindre coût, tandis que la seconde renvoie à des considérations de justice. Ces deux logiques sont intrinsèquement contradictoires. Nombre de PSE rémunèrent notamment les producteurs pour ne pas mener des activités prohibées, ce qui introduit une autre tension, entre la logique d’incitation et le principe d’égalité devant la loi. Les auteurs proposent une approche pour tenter de surmonter ces tensions.

Énergie renouvelable et biodiversité : les implications pour parvenir à une économie verte

En raison de leur rôle crucial dans la lutte contre le changement climatique, les filières de production d’énergie à partir de sources dites « renouvelables » sont souvent implicitement considérées comme favorables à l’environnement alors qu’elles ont toute des impacts, plus ou moins importants sur la biodiversité et les écosystèmes, ainsi que le démontre cette revue de la littérature qui a analysé plus de 500 références scientifiques.

 

Les impacts sont variés, mais ils seront d’autant plus importants que ces solutions énergétiques seront déployées à grande échelle pour permettre une transition rapide vers une économie verte. Si ces pressions varient considérablement entre les différentes filières et les contextes environnementaux dans lesquels elles opèrent, l’impact majeur, commun à toutes les filières, est la perte ou la modification des habitats. Mais d’autres effets négatifs existent comme les traumatismes parfois mortels, la pollution, l’émission de gaz à effet de serre, la compétition pour les usages de l’eau ou encore l’induction de comportement d’évitement, les invasions biologiques ou la modification des micro-climats locaux qui perturbent les écosystèmes.

 

Consultez la synthèse complète dans les ressources ci-dessous.

 

Le résumé des effets négatifs et positifs par filière listés dans la revue est présenté ci-après :

 

Énergie solaire

 

Effets négatifs sur la biodiversité

  • Perte ou fragmentation des habitats : c’est l’effet sur la biodiversité le mieux documenté
  • Collision des oiseaux avec les installations
  • Brûlures occasionnées aux oiseaux exposés aux flux solaires intenses. Ceci pourrait occasionner la mort de milliers d’oiseaux
  • Pollution des masses d’eau à partir de produits chimiques toxiques utilisés pour le traitement des panneaux solaires et des sols (herbicides)
  • Utilisation croissante de l’eau (en particulier dans les déserts)
  • Attraction et désorientation des insectes et des oiseaux causés par une lumière intense ou polarisée
  • Piège écologique en raison de mécanismes attracteurs cumulatifs
  • Perturbation du micro-climat local

 

Effets positifs possibles pour la biodiversité

  • Fourniture de zones de couverture ou d’habitat et d’alimentation (par exemple, pâturages) pour certains animaux

 

Énergie éolienne terrestre

 

Effets négatifs sur la biodiversité

  • Collision d’oiseaux et de chauves-souris avec des éoliennes.Comme pour les oiseaux les risques ne concernent pas seulement les espèces locales, mais aussi les espèces migratrices
  • Traumatismes internes (barotrauma) chez les chauves-souris associés à des réductions soudaines de pression de l’air à proximité des pales
  • Perturbation des voies migratoires pour certaines espèces d’oiseaux et de chauves-souris : c’est une des incidences les mieux documentées et le plus étudiées

 

Effets positifs possibles pour la biodiversité

  • Constitution de territoires favorables pour certaines espèces terrestres en raison de la réduction du trafic, de la disponibilité en ressources alimentaires et de la réduction de prédateurs

 

Énergie hydraulique

 

Effets négatifs sur la biodiversité

  • Disparition d’écosystèmes (lors de la mise en eau des barrages) y compris les réserves naturelles, fragmentation des habitats
  • Perturbation des flux hydriques en amont et en aval des installations hydroélectrique
  • Perturbation des voies migratoires de certaines espèces de poissons
  • Détérioration de la qualité de l’eau en raison des changements dans la charge en sédiments, la turbidité et l’eutrophisation
  • Émissions de GES par les réservoirs qui contribuent au changement climatique anthropique

 

Effets positifs possibles pour la biodiversité

  • Création de nouveaux habitats ou de nouveaux écosystèmes

 

Bioénergie

 

Effets négatifs sur la biodiversité

  • Perte, fragmentation, simplification et homogénéisation des habitats en raison de la mise en place de monocultures intensives et pertes de biodiversité associées
  • Pollution du sol et de l’eau associée à l’utilisation d’engrais et pesticides qui provoque toxicité et eutrophisation,
  • Emissions de polluants dans l’air ambiant qui contribuent à l’acidification et à la formation d’ozone troposphérique, émission de GES pendant tout le cycle de vie de la production de bioénergie qui contribue au changement climatique anthropique
  • Modification des micro-climats locaux en raison des changements dans l’albédo et l’évapotranspiration
  • Concurrence avec la végétation indigène de certaines espèces utilisées comme matières premières (par exemple, Eucalyptus, Miscanthus)

 

Effets positifs possibles pour la biodiversité

  • Fourniture d’habitat, alimentation et autres services écosystémiques de soutien par certaines surfaces recouvertes de plantes énergétiques (par exemple : Miscanthus, Panicum virgatum –switchgrass-)

 

Énergie des mers

 

Effets négatifs sur la biodiversité

  • Perturbations des milieux liées à la construction des installations d’énergie océanique, (par exemple pollution sonore qui affecte certaines espèces aquatiques, en particulier les mammifères marins)
  • Perte ou changement d’habitats associés à la mise en place des fondations des installations ancrés dans le fond marin, la mise en eau permanente des portions des estuaires situés en amont des structures marémotrices, la modification des processus hydrodynamiques et de sédimentation
  • Augmentation de la turbidité dans la colonne d’eau due aux perturbations des fonds marins, changements dans la salinité, afflux d’eau plus oxygénée dans les structures marémotrices
  • Pollution électromagnétique associée aux câbles sous-marins et chimique provenant de lubrifiants et peintures toxiques
  • Changement de composition des communautés de poissons benthiques en raison de pertes d’habitats
    Perturbation des déplacements et de l’alimentation des espèces locales et migratrices
  • Mortalités d’espèces dans les structures marémotrices, collision des oiseaux avec les éoliennes marines et des espèces aquatiques avec des dispositifs utilisant l’énergie des vagues
  • Mortalité des poissons tropicaux en raison des chocs thermiques générés par certaines installations

 

Effets positifs possibles pour la biodiversité

  • Protection de la biodiversité par la création de zones interdites d’accès aux activités de pêche et de transport (par exemple les champs d’éoliennes marines)
  • Abris pour certaines espèces notamment autour des parcs éoliens marins et les infrastructures basées sur l’exploitation des vagues et des marées

 

Énergie géothermique

 

Effets négatifs sur la biodiversité

  • Perte d’habitat pendant la conversion des zones naturelles en installations géothermiques
  • Changement d’habitat au cours du déboisement du site, de la construction de routes, du forage des puits et des sondages sismiques qui affecte les processus de reproduction, de recherche de nourriture et de migration de certaines espèces
  • Émissions de polluants toxiques tels que le H2S, l’arsenic et l’acide borique qui peuvent défolier les plantes ou être incorporés par les organismes
  • Pollution par le bruit et la chaleur des installations géothermiques

 

La revue propose aussi pour chaque filière des mesures d’atténuation permettant d’éviter, minimiser, restaurer ou compenser les impacts, la plus emblématique d’entre elle étant la localisation des installations dans les zones à faible biodiversité, mais le choix de technologies moins impactantes, la planification en amont incluant des procédures de préservation de la biodiversité ou la mise en place systématique d’éléments favorables à la biodiversité au sein ou autour des infrastructures est aussi recommandé. Les auteurs préconisent également de profiter des emprises territoriales, parfois importantes, de ces infrastructures pour créer et maintenir des réserves naturelles dans lesquelles les activités humaines sont réduites.

Un important travail reste à conduire pour renforcer l’acquisition de connaissances sur les impacts réels de ces filières sur les différents compartiments de la biodiversité (des espèces aux écosystèmes) et développer des outils d’évaluation pertinents et efficients.

En effet, la transition énergétique ne pourra se passer de l’exploitation des ressources énergétiques renouvelables. Il est donc essentiel que son développement et les politiques publiques associées prenne en compte la biodiversité. Ceci est d’autant plus crucial que le développement à grande échelle de la transition vers une économie verte démultipliera, parfois de façon exponentielle les effets directs et indirects de ces filières sur l’environnement en général et la biodiversité en particulier.

Renard et risque de transmission de la maladie de Lyme : un effet en cascade

Dans le monde, l’incidence des maladies dites vectorielles (c’est-à-dire transmises par un vecteur vivant à l’Homme ou à l’animal) a augmenté ces dernières décennies. C’est le cas pour les maladies à tiques dans le nord-ouest de l’Europe (maladies transmises par Ixodes ricinus) et dans le nord-est des États-Unis (Ixodes scapularis).

Certaines de ces maladies sont très invalidantes, comme c’est le cas pour la maladie de Lyme.

 

C’est ainsi que les résultats de recherche de l’équipe de Tim R. Hofmeester de l’Université de Wageningen menés sur 20 parcelles forestières aux Pays-Bas, démontrent que l’activité des prédateurs, en régulant les populations de rongeurs porteurs peuvent abaisser le nombre de tiques dans un écosystème et que moins il y a de tiques, moins elles sont elles-mêmes infestées par des pathogènes comme la bactérie responsable de la maladie de Lyme.

 

La mise en évidence de ce phénomène n’est pas nouvelle. Dès 2012, Levy et al.1 avait démontré que si l’émergence de la maladie de Lyme en Amérique du Nord était due à l’augmentation de la population de cerfs, l’augmentation rapide de l’incidence de la maladie dans le nord-est et le mid-ouest des USA ces 30 dernières années, était due à la diminution du renard roux prédateur spécialiste des rongeurs, hôtes privilégié pour la majorité des tiques.

Cette étude montre le rôle important des prédateurs dans la régulation des populations animales et les possibles effets en cascade induits par un déséquilibre de l‘écosystème. Il manquait néanmoins la confirmation de ces résultats par des données en situation réelle, sur le terrain, ce que s’est attaché à faire la présente étude.

Néanmoins cette étude est la première à établir, par des analyses de terrain, une corrélation négative entre l’activité des prédateurs, la densité totale des nymphes et la densité des nymphes infectées pour trois agents pathogènes transmissibles par les tiques. Elle confirme donc que des changements dans l’abondance des prédateurs ont des effets en cascade sur la transmission des pathogènes entre différentes espèces hôtes et que la protection des espèces prédatrices telles que le renard roux, la fouine ou le putois est une solution fondée sur la nature pour diminuer la prévalence des maladies transmises par les tiques.

 

  • Consultez la synthèse dans les ressources ci-dessous. 

 

 

Zoom sur la maladie de Lyme

La maladie de Lyme a été décrite pour la première fois en Suède en 1909 sous forme d’un érythème chronique migrant (une tâche annulaire rougeâtre qui grandit lentement). La première vraie épidémie associant polyarthrite et érythème migrant a été diagnostiquée en 1972 dans la ville de Lyme dans le Connecticut, mais il a fallu attendre 1982 pour qu’un médecin américain, Willi Burgdorfer isole la bactérie qui sera nommée Borrelia burgdorferi.

Les tiques vivent dans les zones boisées et humides et sont endémiques en France.

 

Chez l’Homme, la maladie se développe pendant plusieurs années, tout d’abord sous forme de symptômes cutanés (l’érythème migrant), puis neurologiques (raideurs de la nuque, céphalées, vomissements), avec éventuellement des douleurs articulaires ou des problèmes cardiaques.
Le nombre de cas avoisine les 27 000 chaque année, ce qui a conduit le ministère de la santé à publier en 2016, le plan national de lutte contre la maladie de Lyme et les maladies transmissibles par les tiques.

 

1. Levi T, Kilpatrick MA, Mangel M, Wilmers CC (2012). Deer, predators, and the emergence of Lyme disease. Proceedings National Academy of Sciences USA 109: 10942–10947.

Vertébrés continentaux : la sixième extinction est en marche

L’étude alarmante, publiée le 10 juillet dans les Proceedings of the National Academy of Sciences (PNAS) et qui conclue à l’accélération de la sixième extinction des vertébrés continentaux, a largement été relayée dans les médias.

 

Dans un résumé court et précis, Philippe Gros, directeur scientifique à l’Ifremer et membre du conseil scientifique de la FRB, revient sur les points scientifiques majeurs de l’article et le compare à celui de David Tilman et al. sur la Prédiction des menaces futures sur la biodiversité et pistes pour les réduire dont la synthèse a été réalisée par Jean-François Silvain, directeur de recherche à l’IRD et président de la FRB.

 

Consultez la synthèse dans les ressources ci-dessous. 

L’éclairage nocturne, une nouvelle menace pour la pollinisation

Les pollinisateurs sont en déclin dans le monde entier, ce qui génère des inquiétudes quant à la diminution, en parallèle, du service de pollinisation qu’ils fournissent à la fois aux cultures et aux plantes sauvages et qui est essentiel. Les facteurs anthropiques liés à ce déclin incluent les changements d’habitats, l’agriculture intensive, les pesticides, les espèces exotiques envahissantes, la propagation des agents pathogènes et le changement climatique.

 

Les conséquences de cette augmentation de l’éclairage nocturne sur le fonctionnement des écosystèmes sont généralement inconnues, or il a été suggéré récemment que l’augmentation mondiale et rapide des éclairages artificiels nocturnes pourrait constituer une nouvelle menace pour les écosystèmes terrestres.

 

L’article l’éclairage artificiel nocturne, une nouvelle menace pour la pollinisateurs d’Eva Knop et al montre que l’éclairage artificiel perturbe les réseaux nocturnes de pollinisation et a des conséquences négatives sur le succès reproducteur des plantes.

 

Si on éclaire artificiellement des communautés plantes-pollinisateurs, les visites nocturnes des pollinisateurs sur les plantes sont réduites de 62 % par rapport aux zones non éclairées. Il en résulte une réduction globale de 13 % du nombre de fruits d’une plante particulière, alors même que cette plante a également reçu de nombreuses visites de pollinisateurs diurnes.

 

Ces résultats démontrent également que l’éclairage artificiel de nuit affecte les pollinisateurs nocturnes au point d’entrainer une production de fruits plus faible des plantes qu’ils pollinisent, pouvant affecter en retour les pollinisateurs diurnes, étant donné que ces plantes représentent une source alimentaire importante pour eux.

 

L’article fournit des perspectives sur le fonctionnement des communautés de pollinisateurs et démontre que les pollinisateurs nocturnes ne sont pas redondants par rapport aux communautés diurnes.

 

Ces résultats contribuent à améliorer notre compréhension du déclin des pollinisateurs et de leurs services écosystémiques.

 

La pollinisation par les animaux est essentielle au fonctionnement des écosystèmes naturels, notamment aux communautés de plantes sauvages et apporte un service écosystémique crucial pour l’approvisionnement alimentaire mondial. 88 % de toutes les angiospermes en dépendent à des degrés divers et la valeur économique estimée de la pollinisation était de 361 milliards de dollars américains en 2009.

 

L’inquiétude porte sur le devenir de la pollinisation assurée par les insectes qui pourrait être menacée en raison d’une baisse mondiale des pollinisateurs sauvages et domestiques consécutivement aux activités humaines. Les principaux facteurs à l’origine de ce déclin sont la perte et la dégradation des habitats, l’agriculture conventionnelle intensive, incluant l’utilisation de pesticides, les espèces exotiques envahissantes, les organismes nuisibles et les agents pathogènes et les changements climatiques.

 

 

Le résumé de Philippe Gros et la synthèse de Jean-François Silvain sont téléchargeables dans les ressources ci-dessous. 

Néonicotinoides : des nouvelles connaissances scientifiques sur leur impact sur les abeilles

Les néonicotinoïdes sont des insecticides, c’est-à-dire des produits chimiques dont l’objectif est de tuer des insectes dit « cibles », ravageurs des monocultures commerciales modernes. Les molécules comme le thiamethoxam, l’imidaclopride ou le clothianidine sont des insecticides systémiques, c’est-à-dire qu’elles percolent dans les tissus des plantes traitées, soit directement par enrobage des semences, soit par épandage sur les sols.

 

Les connaissances sur la responsabilité des néonicotinoïdes au déclin des pollinisateurs sont de plus en plus nombreuses. Néanmoins, même si de nombreuses études ont démontré les effets toxiques des néonicotinoïdes sur les pollinisateurs et autres espèces animales, ou encore leurs effets négatifs sur la santé des abeilles y compris à des doses sub-létales, il est toujours délicat de discriminer leurs effets spécifiques de ceux d’autres pressions comme la perte des habitats, le changement climatique ou les pathogènes. Par ailleurs, si certaines études ont démontré que ces molécules augmentaient la mortalité des colonies d’abeilles domestiques en réduisant leur capacité à entretenir la ruche et le succès reproductif des bourdons sauvages et des abeilles solitaires, d’autres n’ont décelé aucun effet. Peu d’informations sont disponibles sur la survie des colonies sur le long terme dans un contexte d’exposition à ces pesticides. Il est en effet difficile de déterminer à quel point ces molécules affectent les abeilles et plus largement leurs colonies sur le long terme.

 

Les principales critiques portées aux études antérieurs sur les néonicotinoïdes étaient que les expérimentations n’avaient pas été conduites dans des conditions d’exposition réalistes, similaires à celles retrouvées au champ. De plus, les études toxicologiques n’utilisaient ni des doses d’insecticides ni des durées d’exposition réalistes, ces doses et durées n’ayant jamais été réellement quantifiées alors qu’elles constituent deux paramètres clés pour établir des liens de cause à effet. Ces différents éléments d’incertitude ont été repris dans l’évaluation relative à la pollinisation, les pollinisateurs et la sécurité alimentaire, publiée en 2016 par la plate-forme intergouvernementale sur la biodiversité et les services écosystémiques.

 

Dans ce contexte de présomption d’effets négatifs avérés des insecticides néonicotinoïdes sur les abeilles, qui a conduit à l’interdiction de ces produits en France (loi du16 aout 2016 pour la reconquête de la biodiversité), deux articles scientifiques ont été publiés le 30 juin dernier dans le journal Science.

 

Tsvetkov et al. ont ainsi démontré qu’au Canada, en zone de production de maïs, les abeilles domestiques étaient exposées aux néonicotinoïdes pendant quatre mois, correspondant à la majorité de leur période d’activité et ce, à des niveaux significatifs malgré l’obligation faite aux agriculteurs d’utiliser des lubrifiants pour réduire les émissions de poussières contaminées en pesticides. Ils ont mis également en évidence que ces molécules, aux doses de terrain, avaient de nombreux effets négatifs préoccupants pour les colonies d’abeilles domestiques expliquant leur affaiblissement, et à terme leur dépérissement : une mortalité précoce des butineuses de 23% supérieure à celle des colonies non contaminées, une propension à l’essaimage combinée à une difficulté à élever une nouvelle reine réduisant le temps efficace de ponte et une perte au fil du temps de la capacité hygiénique de la colonie. Enfin, les scientifiques ont établi qu’en présence du boscalide, (un fongicide commun utilisé notamment en association avec certains insecticides), la toxicité de deux néonicotinoïdes, la clorthianidine et le thiamothoxam étaient presque doublée.

 

En conduisant plusieurs études de terrain en Hongrie, Allemagne et Royaume Unis pour évaluer les effets des insecticides néonicotinoïdes sur trois espèces de pollinisateurs, Woodcock et al. ont, quant à eux, démontré que l’exposition aux néonicotinoïdes a des effets majoritairement négatifs sur le potentiel reproductif interannuel des insectes étudiés et que même si les taux d’exposition aux néonicotinoïdes sont faibles, ils provoquent des impacts sublétaux susceptibles de diminuer la survie à long terme des populations. Des effets négatifs associés au traitement par la clothianidine ont été observés chez les ouvrières d’Apis mellifera, en Hongrie, conduisant à des colonies plus petites au printemps suivant avec un taux de déclin de 24%. Quant aux espèces sauvages Bombus terrestris et Osmia bicornis les auteurs ont démontré que l’exposition aux résidus de néonicotinoïdes, principalement ceux stockés dans les nids et découlant de la contamination environnementale généralisée, diminuait pour les premiers la production de reines et pour les seconds la production d’œufs. Ces différents impacts altérant le succès reproducteur des populations de pollinisateurs domestiques ou sauvages réduisent la capacité de ces espèces à établir de nouvelles populations d’année en année et pourraient expliquer leurs déclins, actuellement largement documentés. Par ailleurs, les résultats obtenus dans trois pays différents démontrent l’importance des facteurs spécifiques et locaux qui expliquent probablement les résultats discordants des études antérieures conduites dans un seul pays ou sur un nombre de sites réduit.

 

Consultez, dans les ressources ci-dessous, les synthèses des deux articles. 

Les réserves marines peuvent atténuer les effets du changement climatique et favoriser l’adaptation des écosystèmes et des populations

Un article de synthèse signé par les plus grandes autorités mondiales en matière d’océanographie biologique – comme les scientifiques C.M. Roberts (Université d’York), J. Lubchenco, ancienne sous-secrétaire au commerce de l’administration Obama, D. Pauly (Université de la Colombie-Britannique) ou encore P. Cury (IRD et alors membre du conseil scientifique de la Fondation pour la recherche sur la biodiversité) – démontrent comment les aires marines protégées contribuent à la fois à la préservation des espèces, à l’atténuation du changement climatique et à son adaptation. Pour que ces zones soient un outil efficace pour préserver les espèces et faire face au changement climatique, les scientifiques estiment qu’il faudrait protéger 30 % du domaine marin, or seuls 3,5 % sont actuellement couverts.

 

Les aires marines protégées ont un rôle majeur à jouer dans l’atténuation et l’adaptation aux changements globaux. En plus de préserver la biodiversité, une bonne gestion des réserves marines peut contribuer à l’adaptation des écosystèmes et des populations humaines aux cinq impacts majeurs du changement climatique sur les océans : l’acidification, la montée des eaux, l’intensification des tempêtes, les changements dans la distribution des espèces, la baisse de productivité et l’appauvrissement en oxygène. Les aires marines protégées peuvent même devenir des outils efficaces et peu coûteux pour réduire l’avancée du changement climatique. En effet, elles favorisent la séquestration et le stockage du carbone et constituent une « police d’assurance » pour les sociétés humaines en limitant les pressions directes sur l’environnement.

 

Parmi les effets positifs des aires marines protégées pour l’adaptation aux effets du changement climatique, on peut retenir que :

  • la protection des zones littorales humides (mangroves, marais, herbiers) maintient une forte activité photosynthétique qui, en utilisant le CO2, réduit l’acidification des eaux. Ces zones constituent des refuges pour les organismes calcifiants ;
  • la création d’aires marines protégées en haute mer favorise la préservation d’une grande abondance des poissons téléostéens méso-pélagiques qui jouent un rôle majeur dans le cycle du carbone ;
  • les aires marines protégées régulent les menaces telles que la surexploitation des milieux, l’urbanisation côtière ou le dragage non durable et sanctuarisent des zones tampons (zones humides côtières, les vasières et les récifs) qui protègent les infrastructures et les zones anthropisées contre l’élévation du niveau de la mer

 

Parmi les effets positifs des aires marines protégées pour l’atténuation du changement climatique, on peut retenir que :

  • les océans constituent un puits de carbone majeur. Les animaux jouent des rôles cruciaux dans les processus biogéochimiques. Les aires marines protégées contribuent ainsi à la préservation du rôle crucial des océans dans la régulation du climat ;
  • les aires marines empêchent le déstockage du carbone en limitant des méthodes de pêche hauturières intensives – comme le chalutage- qui participent à la remise en suspension du carbone sédimentaire ;
  • les écosystèmes complexes favorisent des processus comme la dispersion des pollutions, la protection côtière, ou encore la production alimentaire tout en évitant les changements de régime des écosystèmes aux conséquences graves et inattendues

 

La synthèse complète est téléchargeable dans les ressources ci-dessous. 

Climat et biodiversité – Synthèse de la rencontre avec les experts français du Giec et de l’Ipbes

Le 6 novembre 2014 s’est tenue à la Maison des Océans (Paris Ve) une conférence intitulée “Climat et biodiversité – Rencontre avec les experts français du Giec et de l’Ipbes”, organisée conjointement par la Fondation pour la recherche sur la biodiversité (FRB) et le ministère de l’Écologie, du développement durable et de l’énergie (MEDDE).

 

Elle a réuni un public nombreux (environ 400 personnes) et divers (chercheurs, étudiants, agents de la fonction publique, décideurs, professionnels et gestionnaires, membres d’ONG, journalistes, etc.) et s’articulait selon trois thèmes :

  • Les impacts du changement climatique sur la biodiversité, le fonctionnement des écosystèmes et sur les services écosystémiques : aspects terrestres et marins ;
  • Les interactions climat – biodiversité (rétroactions biosphère – climat) : aspects terrestres et marins ;
  • Les implications socio-économiques des interactions entre changement climatique et biodiversité Des scientifiques français de haut niveau, membres du GIEC ou de l’IPBES, sont intervenus pour présenter leur recherche et communiquer quelques messages clés.

 

La synthèse de cette conférence est téléchargeable dans les ressources ci-dessous.