COLLOQUE - ACIDIFICATION DES OCÉANS Conséquences sur les écosystèmes et les activités humaines

Acidification des océans : causes, conséquences et solutions

28 mars 2019

Jean-Pierre Gattuso CNRS, Sorbonne Université et Iddri

Océan: valeur économique considérable

- Modère le changement climatique
- Représente plus de 90 % de l'espace habitable de la planète
- Abrite 25 % des espèces évoluées
- Fournit 11% des protéines consommées par l'homme
- Protège les côtes

Océan: valeur économique considérable

- Modère le changement climatique
- Représente plus de 90 % de l'espace habitable de la planète
- Abrite 25 % des espèces évoluées
- Fournit 11% des protéines consommées par l'homme
- Protège les côtes

Océan: valeur économique considérable

- Modère le changement climatique
- Représente plus de 90 % de l'espace habitable de la planète
- Abrite 25 % des espèces évoluées
- Fournit 11% des protéines consommées par l'homme
- Protège les côtes

Bilan global du gaz carbonique (2008-2017)

34.5 ± 1.8 Gt CO₂/an (91%)

5.5 ± 2.6 Gt CO₂/an (9%)

Bilan global du gaz carbonique (2008-2017)

34.5 ± 1.8 Gt CO₂/an (91%)

5.5 ± 2.6 Gt CO₂/an (9%)

L'océan : acteur et victime du changement climatique

L'océan : acteur et victime du changement climatique

L'océan : acteur et victime du changement climatique

Qu'est ce que l'acidification des océans?

- CO₂ est un gaz acide (il forme de l'acide carbonique lorsqu'il se dissous dans l'eau)
- Chacun de nous ajoute 4 kg CO₂ par jour dans l'océan

Qu'est ce que l'acidification des océans?

- CO₂ est un gaz acide (il forme de l'acide carbonique lorsqu'il se dissous dans l'eau)
- Chacun de nous ajoute 4 kg CO₂ par jour dans l'océan

Qu'est ce que l'acidification des océans?

- CO₂ est un gaz acide (il forme de l'acide carbonique lorsqu'il se dissous dans l'eau)
- Chacun de nous ajoute 4 kg CO₂ par jour dans l'océan

Impacts de l'acidification

Biodiversité

- Réduction de la biodiversité
- Changement des communautés
- Réchauffement peut augmenter ces impacts de l'acidification

Impacts combinés

Gattuso et al.

(2015)

Impacts combinés

Gattuso et al. (2015)

Impacts combinés

Effets des émissions de carbone sur l'océan					
		2010 Aujourd'hui	210 Atténuation significative des émissions Scénario optimiste RCP 2.6	0 Aucune atténuation des émissions Scénario pessimiste RCP 8.5	5
PHYSIQUE ET CHIMIE	Température (surface) ¹ Acidité (unités pH) ¹ Niveau de la mer ²	— +0.83 °C — -0.11 — +0,19 m	+1,2 °C -0.14 +0,60 m	+3,2 °C -0.40 +0,86 m	
ORGANISMES MARINS	Plantes à fleurs Mangroves Coraux tropicaux Ptéropodes Bivalves Krill Poissons				isque d'impact Indétectable
SERVICES PROCURÉS	Absorption de carbone Protection des rivages Tourisme (récifs coralliens) Pêche et aquaculture de bivalves Pêche, hautes et moyennes latitudes Pêche, basses latitudes			1 Pa indu 2 Pa	Élevé Très élevé ar rapport à l'ère pré- ustrielle (1870-1899) ar rapport à 1901

Gattuso et al. (2015)

Accord de Paris

COP21 · CMP11 **PARIS 2015** UN CLIMATE CHANGE CONFERENCE "contenir l'élévation de la température moyenne de la planète nettement en dessous de 2 °C par rapport aux niveaux préindustriels et de poursuivre l'action menée pour limiter l'élévation des températures à 1,5 °C..."

<text><text><text>

Mise en oeuvre de l'Accord de Paris

Mise en oeuvre de l'Accord de Paris

Les dernières statistiques sont mauvaises

Conclusions

- L'avenir de l'Humanité dépend de celui de l'océan
- Impacts sur l'océan déjà détectables
- Besoin urgent atténuation et adaptation
- L'océan peut fournir des solutions :
 - La plupart des mesures globales ont trop d'incertitudes et des risques d'effets collatéraux négatifs. Trop tôt pour recommander leur mise en œuvre à grande échelle
 - Mesures à petite échelle : sans regret car multiples cobénéfices, "faciles" à mettre en œuvre mais efficacité modeste pour résoudre le problème global
 - Combinaison global + local
- Le rôle des collectivités et du secteur privé est essentiel

Restitution à mi-parcours

• ACIDOSCOPE : Acidification de l'océan : projections, régionalisation et cartographie • Ai_Ai_Ai : Acidification, adaptation, acclimatation des mollusques marins • ICOBio : Impact du changement océanique sur la biologie des organismes calcifiants : le cas de l'ormeau Européen Haliotis tuberculata, une espèce d'intérêt économique • MERCy : Mercury and carbon dioxide impact on the physiology and behavior of early-life stages of cuttlefish • PACIO : Réponses physiologiques et adaptatives des poissons à l'acidification des océans Impact écosystémique : Les cyanobactéries, **Ecosystem** : ightarrowséquestreurs de CO₂ et producteurs des « keystone » molécules qui structurent des écosystèmes • COCCACE : Les coccolithophores et l'acidification océanique **ACID Reefs** : L'autre problème des récifs coralliens